Restoring the renal microvasculature to treat chronic kidney disease

被引:85
作者
Long, David A. [1 ]
Norman, Jill T. [2 ]
Fine, Leon G. [3 ]
机构
[1] UCL Inst Child Hlth, Nephrourol Unit, London WC1N 1EH, England
[2] UCL Ctr Nephrol, London NW3 2PF, England
[3] Cedars Sinai Med Ctr, Dept Biomed Sci, Los Angeles, CA 90048 USA
基金
英国医学研究理事会;
关键词
ENDOTHELIAL PROGENITOR CELLS; INHIBITORY SPLICE VARIANT; GROWTH-FACTOR; IN-VIVO; ANGIOGENESIS; HYPOXIA; FIBROSIS; VEGF; INJURY; OVEREXPRESSION;
D O I
10.1038/nrneph.2011.219
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Chronic kidney disease is characterized by progressive loss of the renal microvasculature, which leads to local areas of hypoxia and induction of profibrotic responses, scarring and deterioration of renal function. Revascularization alone might be sufficient to restore kidney function and regenerate the structure of the diseased kidney. For revascularization to be successful, however, the underlying disease process needs to be halted or alleviated and there must remain a sufficient number of surviving nephron units that can serve as a scaffold for kidney regeneration. This Perspectives article describes how revascularization might be achieved using vascular growth factors or adoptive transfer of endothelial progenitor cells and provides a brief outline of the studies performed to date. An overview of how therapeutic strategies targeting the microvasculature could be enhanced in the future is also presented.
引用
收藏
页码:244 / 250
页数:7
相关论文
共 52 条
[1]   MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis [J].
Anand, Sudarshan ;
Majeti, Bharat K. ;
Acevedo, Lisette M. ;
Murphy, Eric A. ;
Mukthavaram, Rajesh ;
Scheppke, Lea ;
Huang, Miller ;
Shields, David J. ;
Lindquist, Jeffrey N. ;
Lapinski, Philip E. ;
King, Philip D. ;
Weis, Sara M. ;
Cheresh, David A. .
NATURE MEDICINE, 2010, 16 (08) :909-U109
[2]   Endothelial/pericyte interactions [J].
Armulik, A ;
Abramsson, A ;
Betsholtz, C .
CIRCULATION RESEARCH, 2005, 97 (06) :512-523
[3]   Isolation of putative progenitor endothelial cells for angiogenesis [J].
Asahara, T ;
Murohara, T ;
Sullivan, A ;
Silver, M ;
vanderZee, R ;
Li, T ;
Witzenbichler, B ;
Schatteman, G ;
Isner, JM .
SCIENCE, 1997, 275 (5302) :964-967
[4]  
Bates DO, 2002, CANCER RES, V62, P4123
[5]   TGF-β in renal injury and disease [J].
Bottinger, Erwin P. .
SEMINARS IN NEPHROLOGY, 2007, 27 (03) :309-320
[6]   Isolation of renal progenitor cells from adult human kidney [J].
Bussolati, B ;
Bruno, S ;
Grange, C ;
Buttiglieri, S ;
Deregibus, MC ;
Cantino, D ;
Camussi, G .
AMERICAN JOURNAL OF PATHOLOGY, 2005, 166 (02) :545-555
[7]   Molecular mechanisms and clinical applications of angiogenesis [J].
Carmeliet, Peter ;
Jain, Rakesh K. .
NATURE, 2011, 473 (7347) :298-307
[8]   Endothelial Progenitor Cells Homing and Renal Repair in Experimental Renovascular Disease [J].
Chade, Alejandro R. ;
Zhu, Xiang-Yang ;
Krier, James D. ;
Jordan, Kyra L. ;
Textor, Stephen C. ;
Grande, Joseph P. ;
Lerman, Amir ;
Lerman, Lilach O. .
STEM CELLS, 2010, 28 (06) :1039-1047
[9]   Endothelial Progenitor Cells Restore Renal Function in Chronic Experimental Renovascular Disease [J].
Chade, Alejandro R. ;
Zhu, Xiangyang ;
Lavi, Ronit ;
Krier, James D. ;
Pislaru, Sorin ;
Simari, Robert D. ;
Napoli, Claudio ;
Lerman, Amir ;
Lerman, Lilach O. .
CIRCULATION, 2009, 119 (04) :547-U121
[10]   Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair [J].
Chen, Jun ;
Park, Hyeong-Cheon ;
Addabbo, Francesco ;
Ni, Jie ;
Pelger, Edward ;
Li, Houwei ;
Plotkin, Matthew ;
Goligorsky, Michael S. .
KIDNEY INTERNATIONAL, 2008, 74 (07) :879-889