An abundant oxidative lesion, 8-oxo-7,8-dihydroguanine (8-oxoG), often directs the misincorporation of dAMP during replication. To prevent mutations, cells possess an enzymatic system for the removal of 8-oxoG. A key element of this system is 8-oxoguanine-DNA glycosylase (Fpg in bacteria, OGG1 in eukaryotes), which must excise 8-oxoG from 8-oxoG:C pairs but not from 8-oxoG:A. We investigated the influence of various factors, including ionic strength, the presence of Mg2+ and organic anions, polyamides, crowding agents and two small heterocyclic compounds (biotin and caffeine) on the activity and opposite-base specificity of Escherichia coli Fpg and human OGG1. The activity of both enzymes towards 8-oxoG:A decreased sharply with increasing salt and Mg2+ concentration, whereas the activity on 8-oxoG:C was much more stable, resulting in higher opposite-base specificity when salt and Mg2+ were at near-physiological concentrations. This tendency was observed with both Cl- and glutamate as the major anions in the reaction mixture. Kinetic and binding parameters for the processing of 8-oxoG:C and 8-oxoG:A by Fpg and OGG1 were determined under several different conditions. Polyamines, crowding agents, biotin and caffeine affected the activity and specificity of Fpg or OGG1 only marginally. We conclude that, in the intracellular environment, the specificity of Fpg and OGG1 for 8-oxoG:C versus 8-oxoG:A is mostly due to high ionic strength and Mg2+.