The facile preparation of a carbon coated Bi2O3 nanoparticle/nitrogen-doped reduced graphene oxide hybrid as a high-performance anode material for lithium-ion batteries

被引:14
|
作者
Fang, Wei [1 ]
Zhang, Naiqing [2 ,3 ]
Fan, Lishuang [2 ]
Sun, Kening [2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
LONG-LIFE; FABRICATION; NANOTUBES; CAPACITY; STORAGE;
D O I
10.1039/c6ra24403c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A hybrid of carbon coated Bi2O3 nanoparticles distributed on nitrogen-doped reduced graphene oxide is prepared by facile thermal treatment processes. In this hybrid electrode material, the nitrogen-doped reduced graphene oxide improves the electron and Li+ transport due to its good electrical conductivity and surface wettability. In addition, the carbon coating layer avoids direct contact between the Bi2O3 and electrolyte, so it effectively inhibits the repeated formation and decomposition of a solid electrolyte interface film. Furthermore, Bi2O3 nanoparticles can improve the Li+ diffusion because of the short Li+ diffusion distance. As a result, the hybrid has stable cycling retention (391 mA h g(-1) after 250 cycles at 3 A g(-1)), and outstanding rate capability (326 mA h g(-1) at 4.8 A g(-1)). The excellent electrochemical performance is associated with the synergistic effect of the highly conductive nitrogen-doped reduced graphene oxide matrix and carbon coating layer. The excellent lithium storage capability indicates that the hybrid of carbon coated Bi2O3 nanoparticles distributed on nitrogen-doped reduced graphene oxide has significant potential as an anode for lithium-ion batteries.
引用
收藏
页码:99825 / 99832
页数:8
相关论文
共 50 条
  • [1] Nitrogen-doped Carbon Coated Porous Silicon as High Performance Anode Material for Lithium-Ion Batteries
    Jeong, Min-Gi
    Islam, Mobinul
    Du, Hoang Long
    Lee, Yoon-Sung
    Sun, Ho-Hyun
    Choi, Wonchang
    Lee, Joong Kee
    Chung, Kyung Yoon
    Jung, Hun-Gi
    ELECTROCHIMICA ACTA, 2016, 209 : 299 - 307
  • [2] Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries
    Li, Haipeng
    Liu, Zhengjun
    Yang, Shuang
    Zhao, Yan
    Feng, Yuting
    Bakenov, Zhumabay
    Zhang, Chengwei
    Yin, Fuxing
    MATERIALS, 2017, 10 (10):
  • [3] Nitrogen-doped graphene oxide coated ZnO nanohybrid for lithium-ion batteries anode
    Deng, Shenzhen
    Li, Zhongtao
    INTEGRATED FERROELECTRICS, 2017, 182 (01) : 10 - 20
  • [4] Facile fabrication of molybdenum dioxide/nitrogen-doped graphene hybrid as high performance anode material for lithium ion batteries
    Wang, Xia
    Xiao, Ying
    Wang, Jianqiang
    Sun, Lingna
    Cao, Minhua
    JOURNAL OF POWER SOURCES, 2015, 274 : 142 - 148
  • [5] Nitrogen-doped graphene supported NiFe2O4 nanoparticles as high-performance anode material for lithium-ion batteries
    Pan, Shugang
    Zhao, Xianmin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (22) : 26917 - 26928
  • [6] Nitrogen-doped graphene supported NiFe2O4 nanoparticles as high-performance anode material for lithium-ion batteries
    Shugang Pan
    Xianmin Zhao
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 26917 - 26928
  • [7] Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries
    Lee, Dong Jin
    Ryou, Myung-Hyun
    Lee, Je-Nam
    Kim, Byung Gon
    Lee, Yong Min
    Kim, Hye-Won
    Kong, Byung-Seon
    Park, Jung-Ki
    Choi, Jang Wook
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 98 - 101
  • [8] Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries
    Yuan, Guanghui
    Xiang, Jiming
    Jin, Huafeng
    Wu, Lizhou
    Jin, Yanzi
    Zhao, Yan
    MATERIALS, 2018, 11 (01):
  • [9] A Nitrogen-Doped Manganese Oxide Nanoparticles/Porous Carbon Nanosheets Hybrid Material: A High-Performance Anode for Lithium Ion Batteries
    Zheng, Zhong
    Li, Teng
    Wang, Ruizi
    Tong, Zhiqiang
    Tian, Di
    Yuan, Liangjie
    CHEMPLUSCHEM, 2019, 84 (12): : 1805 - 1815
  • [10] Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-ion Batteries
    Xu, Yan
    Zhu, Xiaoshu
    Zhou, Xiaosi
    Liu, Xia
    Liu, Yunxia
    Dai, Zhihui
    Bao, Jianchun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (49): : 28502 - 28508