Global Well-posedness for the Defocusing, Quintic Nonlinear Schrodinger Equation in One Dimension for Low Regularity Data

被引:6
作者
Dodson, Benjamin G. [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
ROUGH SOLUTIONS; CAUCHY-PROBLEM; SCATTERING; EXISTENCE;
D O I
10.1093/imrn/rnr037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove global well-posedness of the one-dimensional quintic defocusing nonlinear Schrodinger initial value problem with low regularity initial data. We show that a unique global solution exists for u(0) is an element of H-s(R), s > 1/4. This improves the result in De Silva, Pavlovic, Staffilani, and Tzirakis [Global well-posedness and polynomial bounds for the defocusing L-2 -critical Schrodinger equation in R.], which proved global wellposedness for s > 1/3. The main new argument is that we obtain almost Morawetz estimates with an improved error.
引用
收藏
页码:870 / 893
页数:24
相关论文
共 23 条
[1]  
[Anonymous], 2006, CBMS REGIONAL SERIES
[2]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[3]  
Bourgain J., 1999, AM MATH C PUBLICATIO
[4]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[5]   THE CAUCHY-PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATION IN H-1 [J].
CAZENAVE, T ;
WEISSLER, FB .
MANUSCRIPTA MATHEMATICA, 1988, 61 (04) :477-494
[6]  
Colliander J, 2008, DISCRETE CONT DYN-A, V21, P665
[7]   Global existence and scattering for rough solutions of a nonlinear Schrodinger equation on R3 [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (08) :987-1014
[8]  
Colliander J, 2002, MATH RES LETT, V9, P659
[9]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[10]   Global well-posedness for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :649-669