Global Well-posedness for the Defocusing, Quintic Nonlinear Schrodinger Equation in One Dimension for Low Regularity Data

被引:6
作者
Dodson, Benjamin G. [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
ROUGH SOLUTIONS; CAUCHY-PROBLEM; SCATTERING; EXISTENCE;
D O I
10.1093/imrn/rnr037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove global well-posedness of the one-dimensional quintic defocusing nonlinear Schrodinger initial value problem with low regularity initial data. We show that a unique global solution exists for u(0) is an element of H-s(R), s > 1/4. This improves the result in De Silva, Pavlovic, Staffilani, and Tzirakis [Global well-posedness and polynomial bounds for the defocusing L-2 -critical Schrodinger equation in R.], which proved global wellposedness for s > 1/3. The main new argument is that we obtain almost Morawetz estimates with an improved error.
引用
收藏
页码:870 / 893
页数:24
相关论文
共 23 条
  • [1] [Anonymous], 2006, CBMS REGIONAL SERIES
  • [2] Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
  • [3] Bourgain J., 1999, AM MATH C PUBLICATIO
  • [4] THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS
    CAZENAVE, T
    WEISSLER, FB
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) : 807 - 836
  • [5] THE CAUCHY-PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATION IN H-1
    CAZENAVE, T
    WEISSLER, FB
    [J]. MANUSCRIPTA MATHEMATICA, 1988, 61 (04) : 477 - 494
  • [6] Colliander J, 2008, DISCRETE CONT DYN-A, V21, P665
  • [7] Global existence and scattering for rough solutions of a nonlinear Schrodinger equation on R3
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (08) : 987 - 1014
  • [8] Colliander J, 2002, MATH RES LETT, V9, P659
  • [9] A refined global well-posedness result for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) : 64 - 86
  • [10] Global well-posedness for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 649 - 669