Mesoscopic analysis of Gibbs' criterion for sessile nanodroplets on trapezoidal substrates

被引:12
作者
Dutka, F. [1 ,2 ]
Napiorkowski, M. [3 ]
Dietrich, S. [1 ,2 ]
机构
[1] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Theoret & Appl Phys, D-70569 Stuttgart, Germany
[3] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
关键词
DER-WAALS THEORY; LINE TENSION; CONTACT LINE; EQUILIBRIUM-CONFIGURATIONS; LIQUID DROPLETS; SOLID-SURFACES; INTERFACE; TRANSITIONS; SUSPENSION; RESISTANCE;
D O I
10.1063/1.3682775
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By taking into account precursor films accompanying nanodroplets on trapezoidal substrates we show that on a mesoscopic level of description one does not observe the phenomenon of liquid-gas-substrate contact line pinning at substrate edges. This phenomenon is present in a macroscopic description and leads to non-unique contact angles which can take values within a range determined by the so-called Gibbs' criterion. Upon increasing the volume of the nanodroplet the apparent contact angle evaluated within the mesoscopic approach changes continuously between two limiting values fulfilling Gibbs' criterion, while the contact line moves smoothly across the edge of the trapezoidal substrate. The spatial extent of the range of positions of the contact line, corresponding to the variations of the contact angle between the values given by Gibbs' criterion, is of the order of ten fluid particle diameters. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682775]
引用
收藏
页数:20
相关论文
共 80 条
[1]   The Role of Surface Energies and Chemical Potential during Nanowire Growth [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Feiner, Lou-Fe ;
Immink, George G. W. ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NANO LETTERS, 2011, 11 (03) :1259-1264
[2]   VANDERWAALS THEORY OF WETTING WITH EXPONENTIAL INTERACTIONS [J].
AUKRUST, T ;
HAUGE, EH .
PHYSICA A, 1987, 141 (2-3) :427-465
[3]   NONUNIVERSAL-NU FROM A VANDERWAALS THEORY OF THE WETTING TRANSITION [J].
AUKRUST, T ;
HAUGE, EH .
PHYSICAL REVIEW LETTERS, 1985, 54 (16) :1814-1816
[4]   Wetting-induced effective interaction potential between spherical particles [J].
Bauer, C ;
Bieker, T ;
Dietrich, S .
PHYSICAL REVIEW E, 2000, 62 (04) :5324-5338
[5]   On the pinning of interfaces on micropillar edges [J].
Berthier, J. ;
Loe-Mie, F. ;
Tran, V. -M. ;
Schoumacker, S. ;
Mittler, F. ;
Marchand, G. ;
Sarrut, N. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 338 (01) :296-303
[6]   Dewetting films:: bifurcations and concentrations [J].
Bertozzi, AL ;
Grün, G ;
Witelski, TP .
NONLINEARITY, 2001, 14 (06) :1569-1592
[7]   Imbibition through an array of triangular posts [J].
Blow, M. L. ;
Kusumaatmaja, H. ;
Yeomans, J. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (46)
[8]   Wetting and spreading [J].
Bonn, Daniel ;
Eggers, Jens ;
Indekeu, Joseph ;
Meunier, Jacques ;
Rolley, Etienne .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :739-805
[9]   SPREADING OF NONVOLATILE LIQUIDS IN A CONTINUUM PICTURE [J].
BROCHARDWYART, F ;
DIMEGLIO, JM ;
QUERE, D ;
DEGENNES, PG .
LANGMUIR, 1991, 7 (02) :335-338
[10]   Interface profiles near three-phase contact lines in electric fields [J].
Buehrle, J ;
Herminghaus, S ;
Mugele, F .
PHYSICAL REVIEW LETTERS, 2003, 91 (08)