Sparse representation-based classification for the planetary gearbox with improved KPCA and dictionary learning

被引:2
|
作者
Li, Ran [1 ]
Liu, Yang [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Fault classification; improved kernel principal component analysis; sparse representation-based classification; dictionary learning; SUPPORT VECTOR MACHINE; FAULT-DIAGNOSIS; COMPONENT ANALYSIS; SIGNALS; TRANSFORM;
D O I
10.1080/21642583.2020.1777218
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A fault diagnosis method for the planetary gearbox according to sparse representation-based classification (SRC) has been presented in this paper. Considering the real-time performance and accuracy rate of the fault diagnosis, the proposed method has introduced the improved kernel principal component analysis (KPCA) and dictionary learning. First, some time domain and frequency domain features are combined into a feature vector to represent a sample, which can reduce the computational burden and enhance the real-time performance of fault classification. Second, the feature sets are transformed into a new feature space through the improved KPCA, which can improve the precision of fault classification. Then, the training samples are used to implement dictionary learning, and the testing samples are taken as the input of the SRC for classifying. Finally, a planetary gearbox fault diagnosis experiment is designed to verify the effectiveness of the proposed method.
引用
收藏
页码:369 / 379
页数:11
相关论文
共 50 条
  • [1] Intelligent fault diagnosis method for rotating machinery via dictionary learning and sparse representation-based classification
    Han, Te
    Jiang, Dongxiang
    Sun, Yankui
    Wang, Nanfei
    Yang, Yizhou
    MEASUREMENT, 2018, 118 : 181 - 193
  • [2] Multiple Kernel Learning for Sparse Representation-Based Classification
    Shrivastava, Ashish
    Patel, Vishal M.
    Chellappa, Rama
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (07) : 3013 - 3024
  • [3] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    Sreeja, S. R.
    Samanta, Debasis
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 31157 - 31180
  • [4] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    S. R. Sreeja
    Debasis Samanta
    Multimedia Tools and Applications, 2023, 82 : 31157 - 31180
  • [5] Deep Sparse Representation-Based Classification
    Abavisani, Mandi
    Patel, Vishal M.
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (06) : 948 - 952
  • [6] Sparse Representation-based Dictionary Learning Methods for Hyperspectral Super-Resolution
    Simsek, Murat
    Polat, Ediz
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 753 - 756
  • [7] Simultaneous discriminative projection and dictionary learning for sparse representation based classification
    Zhang, Haichao
    Zhang, Yanning
    Huang, Thomas S.
    PATTERN RECOGNITION, 2013, 46 (01) : 346 - 354
  • [8] Laplacian sparse dictionary learning for image classification based on sparse representation
    Li, Fang
    Sheng, Jia
    Zhang, San-yuan
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (11) : 1795 - 1805
  • [9] Laplacian sparse dictionary learning for image classification based on sparse representation
    Fang Li
    Jia Sheng
    San-yuan Zhang
    Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 1795 - 1805
  • [10] Sparse representation-based hyperspectral image classification
    Wang, Hairong
    Celik, Turgay
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (05) : 1009 - 1017