Working with missing values

被引:1247
作者
Acock, AC [1 ]
机构
[1] Oregon State Univ, Dept Human Dev & Family Sci, Corvallis, OR 97331 USA
关键词
MAR; MCAR; missing data; missing values; multiple imputation;
D O I
10.1111/j.1741-3737.2005.00191.x
中图分类号
D669 [社会生活与社会问题]; C913 [社会生活与社会问题];
学科分类号
1204 ;
摘要
Less than optimum strategies for missing values can produce biased estimates, distorted statistical power, and invalid conclusions. After reviewing traditional approaches (listwise, pairwise, and mean substitution), selected alternatives are covered including single imputation, multiple imputation, and full information maximum likelihood estimation. The effects of missing values are illustrated for a linear model, and a series of recommendations is provided. When missing values cannot be avoided, multiple imputation and full information methods offer substantial improvements over traditional approaches. Selected results using SPSS, NORM, Stata (mvis/micombine), and Mplus are included as is a table of available software and an appendix with examples of programs for Stata and Mplus.
引用
收藏
页码:1012 / 1028
页数:17
相关论文
共 50 条
[31]   Generative Adversarial Networks Imputation for High Rate Missing Values [J].
Wang, Huan ;
Chen, Yibin ;
Shen, Bingyang ;
Wu, Di ;
Ban, Xiaojuan .
IEEE 2018 INTERNATIONAL CONGRESS ON CYBERMATICS / 2018 IEEE CONFERENCES ON INTERNET OF THINGS, GREEN COMPUTING AND COMMUNICATIONS, CYBER, PHYSICAL AND SOCIAL COMPUTING, SMART DATA, BLOCKCHAIN, COMPUTER AND INFORMATION TECHNOLOGY, 2018, :586-590
[32]   Imputation of missing values in a precipitation-runoff process database [J].
Kalteh, Aman Mohammad ;
Hjorth, Peder .
HYDROLOGY RESEARCH, 2009, 40 (04) :420-432
[33]   Predicting Missing Values in Medical Data Via XGBoost Regression [J].
Zhang, Xinmeng ;
Yan, Chao ;
Gao, Cheng ;
Malin, Bradley A. ;
Chen, You .
JOURNAL OF HEALTHCARE INFORMATICS RESEARCH, 2020, 4 (04) :383-394
[34]   A Pragmatic Ensemble Strategy for Missing Values Imputation in Health Records [J].
Batra, Shivani ;
Khurana, Rohan ;
Khan, Mohammad Zubair ;
Boulila, Wadii ;
Koubaa, Anis ;
Srivastava, Prakash .
ENTROPY, 2022, 24 (04)
[35]   Handling Missing Values in Longitudinal Panel Data With Multiple Imputation [J].
Young, Rebekah ;
Johnson, David R. .
JOURNAL OF MARRIAGE AND FAMILY, 2015, 77 (01) :277-294
[36]   A principal component method to impute missing values for mixed data [J].
Audigier, Vincent ;
Husson, Francois ;
Josse, Julie .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2016, 10 (01) :5-26
[37]   Variable selection by Random Forests using data with missing values [J].
Hapfelmeier, A. ;
Ulm, K. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 80 :129-139
[38]   Generating missing values for simulation purposes: a multivariate amputation procedure [J].
Schouten, Rianne Margaretha ;
Lugtig, Peter ;
Vink, Gerko .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (15) :2909-2930
[39]   Handling missing values in kernel methods with application to microbiology data [J].
Belanche, Lluis A. ;
Kobayashi, Vladimer ;
Aluja, Tomas .
NEUROCOMPUTING, 2014, 141 :110-116
[40]   Handling missing values in exploratory multivariate data analysis methods [J].
Josse, Julie ;
Husson, Francois .
JOURNAL OF THE SFDS, 2012, 153 (02) :79-99