Working with missing values

被引:1204
作者
Acock, AC [1 ]
机构
[1] Oregon State Univ, Dept Human Dev & Family Sci, Corvallis, OR 97331 USA
关键词
MAR; MCAR; missing data; missing values; multiple imputation;
D O I
10.1111/j.1741-3737.2005.00191.x
中图分类号
D669 [社会生活与社会问题]; C913 [社会生活与社会问题];
学科分类号
1204 ;
摘要
Less than optimum strategies for missing values can produce biased estimates, distorted statistical power, and invalid conclusions. After reviewing traditional approaches (listwise, pairwise, and mean substitution), selected alternatives are covered including single imputation, multiple imputation, and full information maximum likelihood estimation. The effects of missing values are illustrated for a linear model, and a series of recommendations is provided. When missing values cannot be avoided, multiple imputation and full information methods offer substantial improvements over traditional approaches. Selected results using SPSS, NORM, Stata (mvis/micombine), and Mplus are included as is a table of available software and an appendix with examples of programs for Stata and Mplus.
引用
收藏
页码:1012 / 1028
页数:17
相关论文
共 50 条
  • [21] Are We Missing the Importance of Missing Values in HIV Prevention Randomized Clinical Trials? Review and Recommendations
    Harel, Ofer
    Pellowski, Jennifer
    Kalichman, Seth
    AIDS AND BEHAVIOR, 2012, 16 (06) : 1382 - 1393
  • [22] Optimal clustering with missing values
    Boluki, Shahin
    Dadaneh, Siamak Zamani
    Qian, Xiaoning
    Dougherty, Edward R.
    BMC BIOINFORMATICS, 2019, 20 (Suppl 12)
  • [23] Optimal Clustering with Missing Values
    Boluki, Shahin
    Dadaneh, Siamak Zamani
    Qian, Xiaoning
    Dougherty, Edward R.
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 593 - 594
  • [24] Optimal clustering with missing values
    Shahin Boluki
    Siamak Zamani Dadaneh
    Xiaoning Qian
    Edward R. Dougherty
    BMC Bioinformatics, 20
  • [25] Missing Values and Indeterminable Values in Fuzzy Relational Compositions
    Cao, Nhung
    PROCEEDINGS OF THE 11TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 2019, 1 : 313 - 320
  • [26] Missing the missing values: The ugly duckling of fairness in machine learning
    Fernando, Martinez-Plumed
    Cesar, Ferri
    David, Nieves
    Jose, Hernandez-Orallo
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (07) : 3217 - 3258
  • [27] A primer for handling missing values in the analysis of education and training data
    Gemici, Sinan
    Bednarz, Alice
    Lim, Patrick
    INTERNATIONAL JOURNAL OF TRAINING RESEARCH, 2012, 10 (03) : 233 - 250
  • [28] Using neural networks for imputing missing values in insurance data
    Gan, Guojun
    Yan, Yueming
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2025,
  • [29] missMDA: A Package for Handling Missing Values in Multivariate Data Analysis
    Josse, Julie
    Husson, Francois
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 70 (01):
  • [30] An industrial missing values processing method based on generating model
    Wang, Huan
    Yuan, Zhaolin
    Chen, Yibin
    Shen, Bingyang
    Wu, Aixiang
    COMPUTER NETWORKS, 2019, 158 : 61 - 68