Working with missing values

被引:1202
|
作者
Acock, AC [1 ]
机构
[1] Oregon State Univ, Dept Human Dev & Family Sci, Corvallis, OR 97331 USA
关键词
MAR; MCAR; missing data; missing values; multiple imputation;
D O I
10.1111/j.1741-3737.2005.00191.x
中图分类号
D669 [社会生活与社会问题]; C913 [社会生活与社会问题];
学科分类号
1204 ;
摘要
Less than optimum strategies for missing values can produce biased estimates, distorted statistical power, and invalid conclusions. After reviewing traditional approaches (listwise, pairwise, and mean substitution), selected alternatives are covered including single imputation, multiple imputation, and full information maximum likelihood estimation. The effects of missing values are illustrated for a linear model, and a series of recommendations is provided. When missing values cannot be avoided, multiple imputation and full information methods offer substantial improvements over traditional approaches. Selected results using SPSS, NORM, Stata (mvis/micombine), and Mplus are included as is a table of available software and an appendix with examples of programs for Stata and Mplus.
引用
收藏
页码:1012 / 1028
页数:17
相关论文
共 50 条
  • [1] Handling missing values in trait data
    Johnson, Thomas F.
    Isaac, Nick J. B.
    Paviolo, Agustin
    Gonzalez-Suarez, Manuela
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2021, 30 (01): : 51 - 62
  • [2] Multiple imputation of missing values
    Royston, Patrick
    STATA JOURNAL, 2004, 4 (03) : 227 - 241
  • [3] Handling Missing Values in Local Post-hoc Explainability
    Cinquini, Martina
    Giannotti, Fosca
    Guidotti, Riccardo
    Mattei, Andrea
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II, 2023, 1902 : 256 - 278
  • [4] Analyzing Longitudinal Data With Missing Values
    Enders, Craig K.
    REHABILITATION PSYCHOLOGY, 2011, 56 (04) : 267 - 288
  • [5] Multiple imputation of missing values: update
    Royston, P
    STATA JOURNAL, 2005, 5 (02) : 188 - 201
  • [6] On the consistency of supervised learning with missing values
    Josse, Julie
    Chen, Jacob M.
    Prost, Nicolas
    Varoquaux, Gael
    Scornet, Erwan
    STATISTICAL PAPERS, 2024, 65 (09) : 5447 - 5479
  • [7] Missingness in the Setting of Competing Risks: from Missing Values to Missing Potential Outcomes
    Lau, Bryan
    Lesko, Catherine
    CURRENT EPIDEMIOLOGY REPORTS, 2018, 5 (02) : 153 - 159
  • [8] Visualizing Missing Values
    Sjobergh, Jonas
    Tanaka, Yuzuru
    2017 21ST INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2017, : 242 - 249
  • [9] PARAFAC and missing values
    Tomasi, G
    Bro, R
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 75 (02) : 163 - 180
  • [10] Clustering with Missing Values
    Siminski, Krzysztof
    FUNDAMENTA INFORMATICAE, 2013, 123 (03) : 331 - 350