Co-localization with Category-Consistent Features and Geodesic Distance Propagation
被引:9
|
作者:
Le, Hieu
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USASUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
Le, Hieu
[1
]
Yu, Chen-Ping
论文数: 0引用数: 0
h-index: 0
机构:
Phiar Technol Inc, Boston, MA USASUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
Yu, Chen-Ping
[3
]
Zelinsky, Gregory
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USASUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
Zelinsky, Gregory
[1
,2
]
Samaras, Dimitris
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USASUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
Samaras, Dimitris
[1
]
机构:
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA
[3] Phiar Technol Inc, Boston, MA USA
来源:
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017)
|
2017年
关键词:
LOCALIZATION;
D O I:
10.1109/ICCVW.2017.134
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Co-localization is the problem of localizing objects of the same class using only the set of images that contain them. This is a challenging task because the object detector must be built without negative examples that can lead to more informative supervision signals. The main idea of our method is to cluster the feature space of a generically pre-trained CNN, to find a set of CNN features that are consistently and highly activated for an object category, which we call category-consistent CNN features. Then, we propagate their combined activation map using superpixel geodesic distances for co-localization. In our first set of experiments, we show that the proposed method achieves state-of-the-art performance on three related benchmarks: PASCAL 2007, PASCAL-2012, and the Object Discovery dataset. We also show that our method is able to detect and localize truly unseen categories, on six held-out ImageNet categories with accuracy that is significantly higher than previous state-of-the-art. Our intuitive approach achieves this success without any region proposals or object detectors, and can be based on a CNN that was pre-trained purely on image classification tasks without further fine-tuning.
机构:
INRIA Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, FranceINRIA Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France
Deleforge, Antoine
Horaud, Radu
论文数: 0引用数: 0
h-index: 0
机构:
INRIA Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, FranceINRIA Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France
Horaud, Radu
Schechner, Yoav Y.
论文数: 0引用数: 0
h-index: 0
机构:
Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, IsraelINRIA Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France
Schechner, Yoav Y.
Girin, Laurent
论文数: 0引用数: 0
h-index: 0
机构:
INRIA Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France
Univ Grenoble, GIPSA Lab, F-38400 St Martin Dheres, FranceINRIA Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France
机构:
South China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
Guangxi Univ, Sch Comp Elect & Informat, Nanning, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
Zhang, Jinxiong
Zhong, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Sch Comp Elect & Informat, Nanning, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
Zhong, Cheng
Huang, Yiran
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Sch Comp Elect & Informat, Nanning, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
Huang, Yiran
Lin, Hai Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Delft, NetherlandsSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
Lin, Hai Xiang
Wang, Mian
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Coll Life Sci & Technol, Nanning, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China