Dawoud-Kibria Estimator for Beta Regression Model: Simulation and Application

被引:19
作者
Abonazel, Mohamed R. [1 ]
Dawoud, Issam [2 ]
Awwad, Fuad A. [3 ]
Lukman, Adewale F. [4 ]
机构
[1] Cairo Univ, Fac Grad Studies Stat Res, Dept Appl Stat & Econometr, Giza, Egypt
[2] Al Aqsa Univ, Dept Math, Gaza City, Palestine
[3] King Saud Univ, Coll Business Adm, Dept Quantitat Anal, Riyadh, Saudi Arabia
[4] Univ Med Sci, Biostat & Epidemiol, Ondo City, Nigeria
关键词
beta Kibria-Lukman estimator; beta ozkale-Kaciranlar estimator; beta ridge estimator; maximum likelihood; mean square; RIDGE-REGRESSION; PERFORMANCE;
D O I
10.3389/fams.2022.775068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The linear regression model becomes unsuitable when the response variable is expressed as percentages, proportions, and rates. The beta regression (BR) model is more appropriate for the variable of this form. The BR model uses the conventional maximum likelihood estimator (BML), and this estimator may not be efficient when the regressors are linearly dependent. The beta ridge estimator was suggested as an alternative to BML in the literature. In this study, we developed the Dawoud-Kibria estimator to handle multicollinearity in the BR model. The properties of the new estimator are derived. We compared the performance of the estimator with the existing estimators theoretically using the mean squared error criterion. A Monte Carlo simulation and a real-life application were carried out to show the benefits of the proposed estimator. The theoretical comparison, simulation, and real-life application results revealed the superiority of the proposed estimator.
引用
收藏
页数:12
相关论文
共 37 条
[1]   A New Two-Parameter Estimator for Beta Regression Model: Method, Simulation, and Application [J].
Abonazel, Mohamed R. ;
Algamal, Zakariya Yahya ;
Awwad, Fuad A. ;
Taha, Ibrahim M. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 7
[2]   Beta ridge regression estimators: simulation and application [J].
Abonazel, Mohamed R. ;
Taha, Ibrahim M. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) :4280-4292
[3]   Liu-Type Multinomial Logistic Estimator [J].
Abonazel, Mohamed R. ;
Farghali, Rasha A. .
SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (02) :203-225
[4]   A new modified ridge-type estimator for the beta regression model: simulation and application [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Elhassanein, Ahmed ;
Ullah, Muhammad Aman .
AIMS MATHEMATICS, 2022, 7 (01) :1035-1057
[5]  
Aktas S., 2017, J ENG TECHNOL APPL S, V2, P101, DOI DOI 10.30931/JETAS.321165
[6]   Developing a Liu-type estimator in beta regression model [J].
Algamal, Zakariya Yahya ;
Abonazel, Mohamed R. .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (05)
[7]   A particle swarm optimization method for variable selection in beta regression model [J].
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2019, 12 (02) :508-519
[8]   Optimal partial ridge estimation in restricted semiparametric regression models [J].
Amini, Morteza ;
Roozbeh, Mandi .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 136 :26-40
[9]   Ridge regression and its applications in genetic studies [J].
Arashi, M. ;
Roozbeh, M. ;
Hamzah, N. A. ;
Gasparini, M. .
PLOS ONE, 2021, 16 (04)
[10]   Development of robust ozkale-Kaciranlar and Yang-Chang estimators for regression models in the presence of multicollinearity and outliers [J].
Awwad, Fuad A. ;
Dawoud, Issam ;
Abonazel, Mohamed R. .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (06)