Enhanced Optical Trapping and Arrangement of Nano-Objects in a Plasmonic Nanocavity

被引:162
作者
Chen, Chang [1 ,2 ]
Juan, Mathieu L. [5 ]
Li, Yi [1 ,3 ]
Maes, Guido [2 ]
Borghs, Gustaaf [1 ,4 ]
Van Dorpe, Pol [1 ,3 ]
Quidant, Romain [5 ,6 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Chem, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Louvain, Belgium
[4] Katholieke Univ Leuven, Dept Phys & Astron, B-3001 Louvain, Belgium
[5] ICFO Inst Ciences Foton, Castelldefels 08860, Spain
[6] ICREA, Barcelona 08010, Spain
关键词
Plasmonics; optical trapping; nanopore; arrangement; NANOPARTICLES; FORCE; LIGHT; PHOTOLITHOGRAPHY; SCATTERING; RESONANCE;
D O I
10.1021/nl2031458
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gentle manipulation of micrometer-sized dielectric objects with optical forces has found many applications in both life and physical sciences. To further extend optical trapping toward the true nanometer scale, we present an original approach combining self-induced back action (SIBA) trapping with the latest advances in nanoscale plasmon engineering. The designed resonant trap, formed by a rectangular plasmonic nanopore, is successfully tested on 22 nm polystyrene beads, showing both single- and double-bead trapping events. The mechanism responsible for the higher stability of the double-bead trapping is discussed, in light of the statistical analysis of the experimental data and numerical calculations. Furthermore, we propose a figure of merit that we use to quantify the achieved trapping efficiency and compare it to prior optical nanotweezers. Our approach may open new routes toward ultra-accurate immobilization and arrangement of nanoscale objects, such as biomolecules.
引用
收藏
页码:125 / 132
页数:8
相关论文
共 39 条
[1]   Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing [J].
Acimovic, Srdjan S. ;
Kreuzer, Mark P. ;
Gonzalez, Maria U. ;
Quidant, Romain .
ACS NANO, 2009, 3 (05) :1231-1237
[2]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[3]   Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives [J].
Aslan, K ;
Lakowicz, JR ;
Geddes, CD .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (05) :538-544
[4]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[5]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[6]   Highly confined surface plasmon polariton resonances in rectangular nanopore cavities [J].
Chen, Chang ;
Lagae, Liesbet ;
Maes, Guido ;
Borghs, Gustaaf ;
Van Dorpe, Pol .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2010, 4 (10) :247-249
[7]   Groove-gratings to optimize the electric field enhancement in a plasmonic nanoslit-cavity [J].
Chen, Chang ;
Verellen, Niels ;
Lodewijks, Kristof ;
Lagae, Liesbet ;
Maes, Guido ;
Borghs, Gustaaf ;
Van Dorpe, Pol .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (03)
[8]   Focusing Plasmons in Nanoslits for Surface-Enhanced Raman Scattering [J].
Chen, Chang ;
Hutchison, James Andell ;
Van Dorpe, Pol ;
Kox, Ronald ;
De Vlaminck, Iwijn ;
Uji-i, Hiroshi ;
Hofkens, Johan ;
Lagae, Liesbet ;
Maes, Guido ;
Borghs, Gustaaf .
SMALL, 2009, 5 (24) :2876-2882
[9]  
Clarke J, 2009, NAT NANOTECHNOL, V4, P265, DOI [10.1038/NNANO.2009.12, 10.1038/nnano.2009.12]
[10]  
De Angelis F, 2010, NAT NANOTECHNOL, V5, P67, DOI [10.1038/NNANO.2009.348, 10.1038/nnano.2009.348]