Modelling human balance using switched systems with linear feedback control

被引:51
作者
Kowalczyk, Piotr [1 ]
Glendinning, Paul [2 ]
Brown, Martin [3 ]
Medrano-Cerda, Gustavo [5 ]
Dallali, Houman [2 ]
Shapiro, Jonathan [4 ]
机构
[1] Manchester Metropolitan Univ, Sch Comp Math & Digital Technol, Manchester M1 5GD, Lancs, England
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England
[4] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England
[5] Ist Itialiano Tecnol, Genoa, Italy
基金
英国工程与自然科学研究理事会;
关键词
human balance; switched systems; dynamics; HUMAN POSTURAL CONTROL; SENSORIMOTOR INTEGRATION; VELOCITY INFORMATION; QUIET STANCE; BODY SWAY; STIFFNESS; STABILIZATION; EQUATIONS; DELAYS; NOISE;
D O I
10.1098/rsif.2011.0212
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We are interested in understanding the mechanisms behind and the character of the sway motion of healthy human subjects during quiet standing. We assume that a human body can be modelled as a single-link inverted pendulum, and the balance is achieved using linear feedback control. Using these assumptions, we derive a switched model which we then investigate. Stable periodic motions (limit cycles) about an upright position are found. The existence of these limit cycles is studied as a function of system parameters. The exploration of the parameter space leads to the detection of multi-stability and homoclinic bifurcations.
引用
收藏
页码:234 / 245
页数:12
相关论文
共 36 条
[1]  
an der Heiden U, 1990, J Dynam Differential Equations, V2, P423, DOI [10.1007/BF01054042, DOI 10.1007/BF01054042]
[2]  
ANDERHEIDEN U, 1992, PMM-J APPL MATH MEC, V70, P621
[3]   A Model of Postural Control in Quiet Standing: Robust Compensation of Delay-Induced Instability Using Intermittent Activation of Feedback Control [J].
Asai, Yoshiyuki ;
Tasaka, Yuichi ;
Nomura, Kunihiko ;
Nomura, Taishin ;
Casadio, Maura ;
Morasso, Pietro .
PLOS ONE, 2009, 4 (07)
[4]   Oscillation types and bifurcations of a nonlinear second-order differential-difference equation [J].
Bayer W. ;
An Der Heiden U. .
Journal of Dynamics and Differential Equations, 1998, 10 (2) :303-326
[5]   Delay-differential equations with discrete feedback: explicit formulae for infinitely many coexisting periodic solutions [J].
Bayer, Wolf ;
an der Heiden, Uwe .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (07) :471-479
[6]   Body sway during quiet standing: Is it the residual chattering of an intermittent stabilization process? [J].
Bottaro, A ;
Casadio, M ;
Morasso, PG ;
Sanguineti, V .
HUMAN MOVEMENT SCIENCE, 2005, 24 (04) :588-615
[7]   Bounded stability of the quiet standing posture: An intermittent control model [J].
Bottaro, Alessandra ;
Yasutake, Youko ;
Nomura, Taishin ;
Casadio, Maura ;
Morasso, Pietro .
HUMAN MOVEMENT SCIENCE, 2008, 27 (03) :473-495
[8]   Stimulus-dependent changes in the vestibular contribution to human postural control [J].
Cenciarini, M ;
Peterka, RJ .
JOURNAL OF NEUROPHYSIOLOGY, 2006, 95 (05) :2733-2750
[9]   Inertial and slow manifolds for delay equations with small delays [J].
Chicone, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (02) :364-406
[10]   THEORY OF THE HUMAN OPERATOR IN CONTROL SYSTEMS I. THE OPERATOR AS AN ENGINEERING SYSTEM [J].
Craik, Kenneth J. W. .
BRITISH JOURNAL OF PSYCHOLOGY-GENERAL SECTION, 1947, 38 :56-61