Asymptotically safe f (R)-gravity coupled to matter II: Global solutions

被引:21
作者
Alkofer, Natalia [1 ]
机构
[1] Radboud Univ Nijmegen, IMAPP, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
关键词
RENORMALIZATION-GROUP; EVOLUTION EQUATION; SCALING SOLUTIONS; GRAVITY;
D O I
10.1016/j.physletb.2018.12.061
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Ultraviolet fixed point functions of the functional renormalisation group equation for f (R)-gravity coupled to matter fields are discussed. The metric is split via the exponential parameterisation into a background metric and a fluctuating part, the former is chosen to be the one of a four-sphere. Also when scalar, fermion and vector fields are included global quadratic solutions exist as in the pure gravity case for discrete sets of values for some endomorphism parameters defining the coarse-graining scheme. The asymptotic, large-curvature behaviour of the fixed point functions is analysed for generic values of these parameters. Examples for global numerical solutions are provided. A special focus is given to the question whether matter fields might destabilise the ultraviolet fixed point function. Similar to a previous analysis of a polynomial, small-curvature approximation to the fixed point functions different classes for such functions are found. (C) 2019 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:480 / 487
页数:8
相关论文
共 53 条
  • [1] Asymptotically safe f (R)-gravity coupled to matter I: The polynomial case
    Alkofer, Natalia
    Saueressig, Frank
    [J]. ANNALS OF PHYSICS, 2018, 396 : 173 - 201
  • [2] [Anonymous], 2018, THESIS
  • [3] the local potential approximation in quantum gravity (vol 6, pg 17, 2012)
    Benedetti, Dario
    Caravelli, Francesco
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10):
  • [4] The local potential approximation in the background field formalism
    Bridle, Hamzaan
    Dietz, Juergen A.
    Morris, Tim R.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03):
  • [5] Asymptotic safety of gravity with matter
    Christiansen, Nicolai
    Litim, Daniel F.
    Pawlowski, Jan M.
    Reichert, Manuel
    [J]. PHYSICAL REVIEW D, 2018, 97 (10)
  • [6] Curvature dependence of quantum gravity
    Christiansen, Nicolai
    Falls, Kevin
    Pawlowski, Jan M.
    Reichert, Manuel
    [J]. PHYSICAL REVIEW D, 2018, 97 (04)
  • [7] Is scale-invariance in gauge-Yukawa systems compatible with the graviton?
    Christiansen, Nicolai
    Eichhorn, Astrid
    Held, Aaron
    [J]. PHYSICAL REVIEW D, 2017, 96 (08)
  • [8] An asymptotically safe solution to the U(1) triviality problem
    Christiansen, Nicolai
    Eichhorn, Astrid
    [J]. PHYSICS LETTERS B, 2017, 770 : 154 - 160
  • [9] Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation
    Codello, Alessandro
    Percacci, Roberto
    Rahmede, Christoph
    [J]. ANNALS OF PHYSICS, 2009, 324 (02) : 414 - 469
  • [10] Non-perturbative QEG corrections to the Yang-Mills beta function
    Daum, J. -E.
    Harst, U.
    Reuter, M.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (09) : 2393 - 2407