Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials

被引:112
作者
Wu, Wenling [1 ]
Wei, Dan [1 ]
Zhu, Jianfeng [1 ]
Niu, Dongjuan [1 ]
Wang, Fen [1 ]
Wang, Lei [1 ]
Yang, Liuqing [2 ]
Yang, Panpan [1 ]
Wang, Chengwei [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti3C2; MXene; PPy; Chemical oxidation; Supercapacitor; 2-DIMENSIONAL TITANIUM CARBIDE; TRANSITION-METAL CARBIDE; TERNARY COMPOSITE; ION INTERCALATION; POLYPYRROLE; MXENE; DESIGN; NANOCOMPOSITE; NANOCRYSTALS; POLYANILINE;
D O I
10.1016/j.ceramint.2019.01.016
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel organ-like Ti3C2/PPy nanocomposite has been synthesized via in-situ polymerization of pyrrole monomers to form well-defined and uniformly dispersed polypyrrole nanoparticles on the organ-like Ti3C2 nanosheets under a low temperature. The microstructures and electrochemical properties of Ti3C2/PPy composites with the different mass ration of PPy and Ti3C2 were studied by means of measurement. The analyses reveal that organ-like Ti3C2/PPy nanocomposite exhibits the highest specific capacitance of 184.36 F g(-1) at 2 mV s(-1) and keeps excellent cycling stability almost 83.33% capacitance retention after 4000 charging-discharging cycles at 1 A g(-1). Notably, the high specific capacitance and excellent cycling stability are mainly attributed to the combination of organ-like Ti3C2 nanosheets with electric double-layer capacitor (EDLCs) mechanism and PPy nanoparticles with pseudocapacitance behavior, which take advantages of the synergistic effect between different electrode materials and different energy storage mechanisms to improve the electrochemical performance. The organ-like Ti3C2 as framework limits the growth of PPy, prevents the stacking of PPy, and promotes structural stability of Ti3C2/PPy nanocomposite. Additionally, the intercalation of homogeneous PPy nanoparticles expands the interlayer spacing of Ti3C2, and the highly aligned polymer chains can afford more pathways for electrolyte ions diffusion and charge transfer, therefore increasing the specific capacitance and decreasing the charge transfer resistance. And most of all it has shown a low-cost and convenient way to fabricate large-scale Ti3C2/PPy nanocomposites which has great potential and promising prospect as electrode materials for supercapacitors.
引用
收藏
页码:7328 / 7337
页数:10
相关论文
共 55 条
  • [1] 2D metal carbides and nitrides (MXenes) for energy storage
    Anasori, Babak
    Lukatskaya, Maria R.
    Gogotsi, Yury
    [J]. NATURE REVIEWS MATERIALS, 2017, 2 (02):
  • [2] [Anonymous], ELECTROCHIM ACTA
  • [3] Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene)
    Boota, Muhammad
    Anasori, Babak
    Voigt, Cooper
    Zhao, Meng-Qiang
    Barsoum, Michel W.
    Gogotsi, Yury
    [J]. ADVANCED MATERIALS, 2016, 28 (07) : 1517 - 1522
  • [4] Conducting Polymers for Pseudocapacitive Energy Storage
    Bryan, Aimee M.
    Santino, Luciano M.
    Lu, Yang
    Acharya, Shinjita
    D'Arcy, Julio M.
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (17) : 5989 - 5998
  • [5] TiCx-Ti2C nanocrystals and epitaxial graphene-based lamellae by pulsed laser ablation of bulk TiC in vacuum
    Cai, K. J.
    Zheng, Y.
    Shen, P.
    Chen, S. Y.
    [J]. CRYSTENGCOMM, 2014, 16 (24): : 5466 - 5474
  • [6] Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation
    Chang, Han-Wei
    Lu, Ying-Rui
    Chen, Jeng-Lung
    Chen, Chi-Liang
    Lee, Jyh-Fu
    Chen, Jin-Ming
    Tsai, Yu-Chen
    Chang, Chien-Min
    Yeh, Ping-Hung
    Chou, Wu-Ching
    Liou, Ya-Hsuan
    Dong, Chung-Li
    [J]. NANOSCALE, 2015, 7 (05) : 1725 - 1735
  • [7] Flexible supercapacitors based on carbon nanomaterials
    Chen, Tao
    Dai, Liming
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) : 10756 - 10775
  • [8] Asymmetric Supercapacitor Electrodes and Devices
    Choudhary, Nitin
    Li, Chao
    Moore, Julian
    Nagaiah, Narasimha
    Zhai, Lei
    Jung, Yeonwoong
    Thomas, Jayan
    [J]. ADVANCED MATERIALS, 2017, 29 (21)
  • [9] Ion Intercalation into Two-Dimensional Transition-Metal Carbides: Global Screening for New High-Capacity Battery Materials
    Eames, Christopher
    Islam, M. Saiful
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (46) : 16270 - 16276
  • [10] Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance
    Ghidiu, Michael
    Lukatskaya, Maria R.
    Zhao, Meng-Qiang
    Gogotsi, Yury
    Barsoum, Michel W.
    [J]. NATURE, 2014, 516 (7529) : 78 - U171