Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method

被引:57
作者
Alajmi, Mahdi S. [1 ]
Almeshal, Abdullah M. [2 ]
机构
[1] Publ Author Appl Educ & Training, Coll Technol Studies, Dept Mfg Engn Technol, Safat 13092, Kuwait
[2] Publ Author Appl Educ & Training, Coll Technol Studies, Dept Elect Engn Technol, Safat 13092, Kuwait
关键词
adaptive neuro-fuzzy inference system; turning process; surface roughness; machine learning; quantum particle swarm optimization; ANFIS-QPSO; ANN; PARTICLE SWARM OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION; MODEL; ALGORITHM; STEEL; PERFORMANCE; PARAMETERS; TAGUCHI; RSM;
D O I
10.3390/ma13132986
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents a prediction method of surface roughness values for dry and cryogenic turning of AISI 304 stainless steel using the ANFIS-QPSO machine learning approach. ANFIS-QPSO combines the strengths of artificial neural networks, fuzzy systems and evolutionary optimization in terms of accuracy, robustness and fast convergence towards global optima. Simulations revealed that ANFIS-QPSO results in accurate prediction of surface roughness with RMSE = 4.86%, MAPE = 4.95% and R-2= 0.984 for the dry turning process. Similarly, for the cryogenic turning process, ANFIS-QPSO resulted in surface roughness predictions with RMSE = 5.08%, MAPE = 5.15% and R-2= 0.988 that are of high agreement with the measured values. Performance comparisons between ANFIS-QPSO, ANFIS, ANFIS-GA and ANFIS-PSO suggest that ANFIS-QPSO is an effective method that can ensure a high prediction accuracy of surface roughness values for dry and cryogenic turning processes.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 44 条
[1]   An ANN-Based Method to Predict Surface Roughness in Turning Operations [J].
Arapoglu, R. Aykut ;
Sofuoglu, Mehmet Alper ;
Orak, Sezan .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2017, 42 (05) :1929-1940
[2]   Prediction of surface roughness and cutting zone temperature in dry turning processes of AISI304 stainless steel using ANFIS with PSO learning [J].
Aydin, Mehmet ;
Karakuzu, Cihan ;
Ucar, Mehmet ;
Cengiz, Abdulkadir ;
Cavuslu, Mehmet Ali .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 67 (1-4) :957-967
[3]  
Boothroyd G., 1989, FUNDAMENTALS MACHINI, V2nd
[4]   Prediction and optimization of machining time and surface roughness of AISI O1 tool steel in wire-cut EDM using robust design and desirability approach [J].
Camposeco-Negrete, Carmita .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 103 (5-8) :2411-2422
[5]   Predictive modeling and multi-response optimization of technological parameters in turning of Polyoxymethylene polymer (POM C) using RSM and desirability function [J].
Chabbi, Amel ;
Yallese, Mohamed Athmane ;
Meddour, Ikhlas ;
Nouioua, Mourad ;
Mabrouki, Tarek ;
Girardin, Francois .
MEASUREMENT, 2017, 95 :99-115
[6]   Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods [J].
Chen, Ren-Peng ;
Zhang, Pin ;
Kang, Xin ;
Zhong, Zhi-Quan ;
Liu, Yuan ;
Wu, Huai-Na .
SOILS AND FOUNDATIONS, 2019, 59 (02) :284-295
[7]   Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools [J].
Ciftci, I .
TRIBOLOGY INTERNATIONAL, 2006, 39 (06) :565-569
[8]  
Cuevas E, 2020, STUD COMPUT INTELL, V854, P97, DOI 10.1007/978-3-030-28917-1_5
[9]   Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining [J].
Deris, Ashanira Mat ;
Zain, Azlan Mohd ;
Sallehuddin, Roselina .
MECCANICA, 2013, 48 (08) :1937-1945
[10]   Prediction Model of Shield Performance During Tunneling via Incorporating Improved Particle Swarm Optimization Into ANFIS [J].
Elbaz, Khalid ;
Shen, Shui-Long ;
Sun, Wen-Juan ;
Yin, Zhen-Yu ;
Zhou, Annan .
IEEE ACCESS, 2020, 8 :39659-39671