Classification of Various Marijuana Varieties by Raman Microscopy and Chemometrics

被引:15
作者
Ramos-Guerrero, Luis [1 ]
Montalvo, Gemma [2 ,3 ]
Cosmi, Marzia [4 ]
Garcia-Ruiz, Carmen [2 ,3 ]
Ortega-Ojeda, Fernando E. [2 ,3 ,5 ]
机构
[1] Univ UTE, Ctr Invest Alimentos, CIAL Ctr Invest Alimentos, EC-170527 Quito, Ecuador
[2] Univ Alcala, Dept Quim Analit Quim Fis & Ingn Quim, Ctra Madrid Barcelona Km 33,600, Madrid 28871, Spain
[3] Univ Alcala, Inst Univ Invest Ciencias Policiales IUICP, Calle Libreros 27, Madrid 28801, Spain
[4] Univ Trieste, Dept Engn & Architecture, Via Alfonso Valerio 6a, I-34127 Trieste, Italy
[5] Univ Alcala, Dept Ciencias Comp, Ctra Madrid Barcelona Km 33,600, Madrid 28871, Spain
关键词
marijuana; trichome; chemometrics; Raman microscopy; discrimination; OPLS-DA; CANNABIS-SATIVA; TRICHOMES; DA;
D O I
10.3390/toxics10030115
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Raman analysis of marijuana is challenging because of the sample's easy photo-degradation caused by the laser intensity. In this study, optimization of collection parameters and laser focusing on marijuana trichome heads allowed collecting Raman spectra without damaging the samples. The Raman spectra of Delta(9)-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) standard cannabinoids were compared with Raman spectra of five different types of marijuana: four Sativa varieties (Amnesia Haze, Amnesia Hy-Pro, Original Amnesia, and Y Griega) and one Indica variety (Black Domina). The results verified the presence of several common spectral bands that are useful for marijuana characterization. Results were corroborated by the quantum chemical simulated Raman spectra of their acid-form (tetrahydrocannabinol acid (THCA), cannabidiol acid (CBDA)) and decarboxylated cannabinoids (THC, CBD, and CBN). A chemometrics-assisted method based on Raman microscopy and OPLS-DA offered good classification among the different marijuana varieties allowing identification of the most significant spectral bands.
引用
收藏
页数:13
相关论文
共 27 条
[1]  
Andre CM, 2016, FRONT PLANT SCI, V7, DOI [10.3389/fpls.2016.00463, 10.3389/fpls.2016.00019]
[2]   OPLS discriminant analysis:: combining the strengths of PLS-DA and SIMCA classification [J].
Bylesjo, Max ;
Rantalainen, Mattias ;
Cloarec, Olivier ;
Nicholson, Jeremy K. ;
Holmes, Elaine ;
Trygg, Johan .
JOURNAL OF CHEMOMETRICS, 2006, 20 (8-10) :341-351
[3]   Statistical total correlation spectroscopy:: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets [J].
Cloarec, O ;
Dumas, ME ;
Craig, A ;
Barton, RH ;
Trygg, J ;
Hudson, J ;
Blancher, C ;
Gauguier, D ;
Lindon, JC ;
Holmes, E ;
Nicholson, J .
ANALYTICAL CHEMISTRY, 2005, 77 (05) :1282-1289
[4]   Critical review on recent trends in cannabinoid determination on cannabis herbal samples: From chromatographic to vibrational spectroscopic techniques [J].
Deidda, Riccardo ;
Dispas, Amandine ;
De Bleye, Charlotte ;
Hubert, Philippe ;
Ziemons, Eric .
ANALYTICA CHIMICA ACTA, 2022, 1209
[5]   Biochemical Origin of Raman-Based Diagnostics of Huanglongbing in Grapefruit Trees [J].
Dou, Tianyi ;
Sanchez, Lee ;
Irigoyen, Sonia ;
Goff, Nicolas ;
Niraula, Prakash ;
Mandadi, Kranthi ;
Kurouski, Dmitry .
FRONTIERS IN PLANT SCIENCE, 2021, 12
[6]   Chemical fingerprinting of single glandular trichomes of Cannabis sativa by Coherent anti-Stokes Raman scattering (CARS) microscopy [J].
Ebersbach, Paul ;
Stehle, Felix ;
Kayser, Oliver ;
Freier, Erik .
BMC PLANT BIOLOGY, 2018, 18
[7]   Chemical constituents of marijuana: The complex mixture of natural cannabinoids [J].
ElSohly, MA ;
Slade, D .
LIFE SCIENCES, 2005, 78 (05) :539-548
[8]  
European Monitoring Centre for Drugs and Drug Addiction, 2020, EUR DRUG REP TRENDS
[9]  
Farag K., 2017, HDB CANNABIS RELATED
[10]  
Frisch M. J., 2016, Gaussian 16, Revision C. 01