Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699

被引:61
作者
Xu, J
Wan, E
Kim, CJ
Floss, HG
Mahmud, T
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[2] Oregon State Univ, Coll Pharm, Dept Pharmaceut Sci, Corvallis, OR 97331 USA
来源
MICROBIOLOGY-SGM | 2005年 / 151卷
关键词
D O I
10.1099/mic.0.28138-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Rifamycin B biosynthesis by Amycolatopsis mediterranei S699 involves a number of unusual modification reactions in the formation of the unique polyketide backbone and decoration of the molecule. A number of genes believed to be involved in the tailoring of rifamycin B were investigated and the results confirmed that the formation of the naphthalene ring moiety of rifamycin takes place during the polyketide chain extension and is catalysed by Rif-Orf19, a 3-(3-hydroxyphenyl)propionate hydroxylase-like protein. The cytochrome P450-dependent monooxygenase encoded by rif-orf5 is required for the conversion of the Delta 12, 29 olefinic bond in the polyketide backbone of rifamycin W into the ketal moiety of rifamycin B. Furthermore, Rif-Orf3 may be involved in the regulation of rifamycin B production, as its knock-out mutant produced about 40 % more rifamycin B than the wild-type. The work also revealed that many of the genes located in the cluster are not involved in rifamycin biosynthesis, but might be evolutionary remnants carried over from an ancestral lineage.
引用
收藏
页码:2515 / 2528
页数:14
相关论文
共 49 条
[1]   The loading and initial elongation modules of rifamycin synthetase collaborate to produce mixed aryl ketide products-1 [J].
Admiraal, SJ ;
Khosla, C ;
Walsh, CT .
BIOCHEMISTRY, 2002, 41 (16) :5313-5324
[2]   The loading module of rifamycin synthetase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates [J].
Admiraal, SJ ;
Walsh, CT ;
Khosla, C .
BIOCHEMISTRY, 2001, 40 (20) :6116-6123
[3]   Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441 [J].
Arai, H ;
Yamamoto, T ;
Ohishi, T ;
Shimizu, T ;
Nakata, T ;
Kudo, T .
MICROBIOLOGY-SGM, 1999, 145 :2813-2820
[4]   Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699 [J].
August, PR ;
Tang, L ;
Yoon, YJ ;
Ning, S ;
Muller, R ;
Yu, TW ;
Taylor, M ;
Hoffmann, D ;
Kim, CG ;
Zhang, XH ;
Hutchinson, CR ;
Floss, HG .
CHEMISTRY & BIOLOGY, 1998, 5 (02) :69-79
[5]  
Barnett V, 1997, STAT ENVIRON, V3, P3
[6]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[7]   Structural mechanism for rifampicin inhibition of bacterial RNA polymerase [J].
Campbell, EA ;
Korzheva, N ;
Mustaev, A ;
Murakami, K ;
Nair, S ;
Goldfarb, A ;
Darst, SA .
CELL, 2001, 104 (06) :901-912
[8]   Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis [J].
Cheng, YQ ;
Tang, GL ;
Shen, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (06) :3149-3154
[9]   OXIMES OF 3-FORMYLRIFAMYCIN SV SYNTHESIS, ANTIBACTERIAL ACTIVITY, AND OTHER BIOLOGICAL PROPERTIES [J].
CRICCHIO, R ;
LANCINI, G ;
TAMBORINI, G ;
SENSI, P .
JOURNAL OF MEDICINAL CHEMISTRY, 1974, 17 (04) :396-403
[10]  
CRICCHIO R, 1975, FARMACO-ED SCI, V30, P605