Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor

被引:251
作者
Chu, Iek-Heng [1 ]
Kompella, Christopher S. [1 ]
Han Nguyen [1 ]
Zhu, Zhuoying [1 ]
Hy, Sunny [1 ]
Deng, Zhi [1 ]
Meng, Ying Shirley [1 ]
Ong, Shyue Ping [1 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr,Mail Code 0448, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
GLASS-CERAMIC ELECTROLYTES; LITHIUM; STABILITY; DYNAMICS; 1ST-PRINCIPLES; CHALLENGES; INSIGHTS; CRYSTAL;
D O I
10.1038/srep33733
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
All-solid-state sodium-ion batteries are promising candidates for large-scale energy storage applications. The key enabler for an all-solid-state architecture is a sodium solid electrolyte that exhibits high Na+ conductivity at ambient temperatures, as well as excellent phase and electrochemical stability. In this work, we present a first-principles-guided discovery and synthesis of a novel Cl-doped tetragonal Na3PS4 (t-Na3-xPS4-xClx) solid electrolyte with a room-temperature Na+ conductivity exceeding 1 mS cm(-1). We demonstrate that an all-solid-state TiS2/t-Na3-xPS4-xClx/Na cell utilizing this solid electrolyte can be cycled at room-temperature at a rate of C/10 with a capacity of about 80 mAh g(-1) over 10 cycles. We provide evidence from density functional theory calculations that this excellent electrochemical performance is not only due to the high Na+ conductivity of the solid electrolyte, but also due to the effect that "salting" Na3PS4 has on the formation of an electronically insulating, ionically conducting solid electrolyte interphase.
引用
收藏
页数:10
相关论文
共 49 条
[21]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[22]   SYNTHESIS, STRUCTURE DETERMINATION, AND IONIC-CONDUCTIVITY OF SODIUM TETRATHIOPHOSPHATE [J].
JANSEN, M ;
HENSELER, U .
JOURNAL OF SOLID STATE CHEMISTRY, 1992, 99 (01) :110-119
[23]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/NMAT3066, 10.1038/nmat3066]
[24]   Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12 [J].
Kandagal, Vinay S. ;
Bharadwaj, Mridula Dixit ;
Waghmare, Umesh V. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (24) :12992-12999
[25]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[26]   A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes [J].
Kuhn, Alexander ;
Gerbig, Oliver ;
Zhu, Changbao ;
Falkenberg, Frank ;
Maier, Joachim ;
Lotsch, Bettina V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (28) :14669-14674
[27]  
Larcher D, 2015, NAT CHEM, V7, P19, DOI [10.1038/NCHEM.2085, 10.1038/nchem.2085]
[28]   Particle Size Dependence of the Ionic Diffusivity [J].
Malik, Rahul ;
Burch, Damian ;
Bazant, Martin ;
Ceder, Gerbrand .
NANO LETTERS, 2010, 10 (10) :4123-4127
[29]   First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material [J].
Mo, Yifei ;
Ong, Shyue Ping ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2012, 24 (01) :15-17
[30]   A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE MOLECULAR-DYNAMICS METHODS [J].
NOSE, S .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (01) :511-519