Evaluation of site-directed spin labeling for characterizing protein-ligand complexes using simulated restraints

被引:16
|
作者
Constantine, KL [1 ]
机构
[1] Bristol Myers Squibb Co, Pharmaceut Res Inst, Struct Biol & Modeling, Princeton, NJ 08543 USA
关键词
D O I
10.1016/S0006-3495(01)75785-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Simulation studies have been performed to evaluate the utility of site-directed spin labeling for determining the structures of protein-ligand complexes, given a known protein structure. Two protein-ligand complexes were used as model systems for these studies: a 1.9-Angstrom -resolution x-ray structure of a dihydrofolate reductase mutant complexed with methotrexate, and a 1.5-Angstrom -resolution x-ray structure of the V-Src tyrosine kinase SH2 domain complexed with a five-residue phosphopeptide. Nitroxide spin labels were modeled at five dihydrofolate reductase residue positions and at four SH2 domain residue positions. For both systems, after energy minimization, conformational ensembles of the spin-labeled residues were generated by simulated annealing while holding the remainder of the protein-ligand complex fixed. Effective distances, simulating those that could be obtained from H-1-NMR relaxation measurements, were calculated between ligand protons and the spin labels. These were converted to restraints with several different levels of precision. Restrained simulated annealing calculations were then performed with the aim of reproducing target ligand-binding modes. The effects of incorporating a few supplementary short-range (less than or equal to5.0 Angstrom) distance restraints were also examined. For the dihydrofolate reductase-methotrexate complex, the ligand-binding mode was reproduced reasonably well using relatively tight spin-label restraints, but methotrexate was poorly localized using loose spin-label restraints. Short-range and spin-label restraints proved to be complementary. For the SH2 domain-phosphopeptide complex without the short-range restraints, the peptide did not localize to the correct depth in the binding groove; nevertheless, the orientation and internal conformation of the peptide was reproduced moderately well. Use of the spin-label restraints in conjunction with the short-range restraints resulted in relatively well defined structural ensembles. These results indicate that restraints derived from site-directed spin labeling can contribute significantly to defining the orientations and conformations of bound ligands. Accurate ligand localization appears to require either a few supplementary short-range distance restraints, or relatively tight spin-label restraints, with at least one spin label positioned so that some of the restraints draw the ligand into the binding pocket in the latter case.
引用
收藏
页码:1275 / 1284
页数:10
相关论文
共 50 条
  • [31] Wayne Hubbell and the Path to Site-Directed Spin Labeling
    Cafiso, David S.
    APPLIED MAGNETIC RESONANCE, 2024, 55 (1-3) : 5 - 10
  • [32] Estimation of binding parameters for the protein-protein interaction using a site-directed spin labeling and EPR spectroscopy
    Sarewicz, Marcin
    Szytula, Sebastian
    Dutka, Malgorzata
    Osyczka, Artur
    Froncisz, Wojciech
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2008, 37 (04): : 483 - 493
  • [33] G-Quadruplexes Recognition by Platinum Complexes Probed by Site-Directed Spin Labeling
    Zhang, Xiaojun
    Xu, Cuixia
    Mao, Zong-Wan
    Qin, Peter
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 564A - 564A
  • [34] Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling
    Hurth, KM
    Nilges, MJ
    Carlson, KE
    Tamrazi, A
    Belford, RL
    Katzenellenbogen, JA
    BIOCHEMISTRY, 2004, 43 (07) : 1891 - 1907
  • [35] Monitoring RNA base structure and dynamics using site-directed spin labeling
    Qin, PZ
    Hideg, K
    Feigon, J
    Hubbell, WL
    BIOCHEMISTRY, 2003, 42 (22) : 6772 - 6783
  • [36] Studying RNA conformational changes using site-directed spin labeling.
    Qin, P
    Iseri, J
    Oki, A
    Cai, Q
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 572A - 572A
  • [37] Peptide-membrane interactions determined using site-directed spin labeling
    Cafiso, DS
    PEPTIDE-LIPID INTERACTIONS, 2002, 52 : 3 - 29
  • [38] Membrane protein structure and dynamics studied by site-directed spin-labeling ESR
    Bordignon, Enrica
    Steinhoff, Heinz-Jurgen
    ESR SPECTROSCOPY IN MEMBRANE BIOPHYSICS, 2007, 27 : 129 - +
  • [39] Monitoring Structural Transitions in Icosahedral Virus Protein Cages by Site-Directed Spin Labeling
    Usselman, Robert J.
    Walter, Eric D.
    Willits, Debbie
    Douglas, Trevor
    Young, Mark
    Singel, David J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (12) : 4156 - 4159
  • [40] Site-directed spin-labeling of myosin II mutants
    Klein, JC
    Blakely, SE
    Surek, JT
    Titus, MA
    Thomas, DD
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 484A - 484A