A note on the smallest semicopula-based universal integral and an application

被引:6
作者
Luan, Tran Nhat [1 ]
Hoang, Do Huy [2 ]
Thuyet, Tran Minh [3 ]
Phuoc, Huynh Ngoc [4 ]
Dung, Kieu Huu [5 ]
机构
[1] Inst Computat Sci & Technol, Ho Chi Minh City, Vietnam
[2] Eastern Int Univ, Ho Chi Minh City, Vietnam
[3] Univ Econ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[4] Vietnam Natl Univ, Sch Med, Ho Chi Minh City, Vietnam
[5] Van Lang Univ, Fac Basic Sci, Ho Chi Minh City, Vietnam
关键词
Continuity; Monotone convergence theorem; Semicopula; Smallest semicopula-based universal integral; Strict level-set;
D O I
10.1016/j.fss.2021.07.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study two properties of the seminormed fuzzy integral. By applying these results, we propose alternative proof of the monotone convergence theorems for smallest semicopula-based universal integrals, which are proposed by J. Borzova-Molnarova et al. in 2015. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 101
页数:14
相关论文
共 14 条
[11]   On the Chebyshev type inequality for seminormed fuzzy integral [J].
Ouyang, Yao ;
Mesiar, Radko .
APPLIED MATHEMATICS LETTERS, 2009, 22 (12) :1810-1815
[12]   MAXITIVE MEASURE AND INTEGRATION [J].
SHILKRET, N .
PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1971, 74 (02) :109-&
[13]  
Sugeno M, 1974, THESIS TOKYO I TECHN
[14]  
Wang Z., 2009, IFSR INT SER SYST SC