Effects of modified surface on flow and heat transfer of heat pipe

被引:4
|
作者
Wang, Chengchao [1 ]
Qi, Cong [1 ]
Han, Dongtai [1 ]
Wang, Yuxing [1 ]
Sun, Liang [1 ]
机构
[1] China Univ Min & Technol, Sch Low Carbon Energy & Power Engn, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSFER PERFORMANCE; THERMAL PERFORMANCE; THERMOSIPHON; NANOFLUID; SIMULATION; COPPER; MICROCHANNEL; LUBRICANT;
D O I
10.1140/epjp/s13360-022-02532-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A physical model of the heat pipe with an ordinary and modified surface was constructed to numerically simulate the thermal performance inside the heat pipe. In this article, water was chosen as the working fluid. Different heating power and filling ratios were considered. The results showed that the increase in the heating power and filling ratios can improve the heat exchange capacity of the heat pipe. The addition of the superhydrophilic surface can create more bubble cores, and the addition of the superhydrophobic surface can quickly condense the droplets. For the thermal resistance, compared to the thermosyphon with ordinary surface, the heat pipe with modified surface was decreased by 3.03-7.99%, and the heat transfer coefficient was increased by 2.66-17.59%. It was concluded that the addition of the modified surface can enhance the heat exchange capacity of the heat pipe.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Influence of nanofluid on heat transfer in a loop heat pipe
    Gunnasegaran, P.
    Abdullah, M. Z.
    Shuaib, N. H.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 47 : 82 - 91
  • [42] Enhancement of Heat Transfer in Double Pipe Heat Exchanger
    Ponshanmugakumar, A.
    Rajavel, R.
    MATERIALS TODAY-PROCEEDINGS, 2019, 16 : 706 - 713
  • [43] A novel triple-diameter pulsating heat pipe: Flow regimes and heat transfer performance
    Fallahzadeh, Rasoul
    Aref, Latif
    Bozzoli, Fabio
    Cattani, Luca
    Gholami, Hormoz
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 42
  • [44] Experimental and numerical analysis of heat transfer and fluid flow characteristics inside pulsating heat pipe
    Sonawane, Chandrakant R.
    Tolia, Kuldeep
    Pandey, Anand
    Kulkarni, Atul
    Punchal, Hitesh
    Sadasivuni, Kishor Kumar
    Kumar, Anil
    Khalid, Mohammad
    CHEMICAL ENGINEERING COMMUNICATIONS, 2023, 210 (04) : 549 - 565
  • [45] Heat Transfer Performance Analysis and Simulation of Heat Pipe Heat Exchanger
    Kwon, Hyuk Su
    Kwon, Cheong Hoon
    Jung, Eui Guk
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2023, 47 (11) : 595 - 605
  • [46] Mathematical model for heat transfer limitations of heat pipe
    Nemec, Patrik
    Caja, Alexander
    Malcho, Milan
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (1-2) : 126 - 136
  • [47] THREE-DIMENSIONAL OSCILLATING HEAT PIPE: FLOW PATTERN TRANSITION AND HEAT TRANSFER PERFORMANCE
    Liu, Zhang
    Ji, Yulong
    Zhang, Dengke
    PROCEEDINGS OF ASME 2024 7TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, MNHMT 2024, 2024,
  • [48] What dominates heat transfer performance of a double-pipe heat exchanger
    Zheng, Dan
    Hu, Zhenwei
    Tian, Liting
    Wang, Jin
    Sunden, Bengt
    OPEN PHYSICS, 2021, 19 (01): : 863 - 866
  • [49] Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids
    Ghanbarpour, M.
    Nikkarn, N.
    Khodabandeh, R.
    Toprak, M. S.
    APPLIED THERMAL ENGINEERING, 2015, 90 : 127 - 135
  • [50] Single-phase fluid flow and heat transfer characteristics of nanofluid in a circular microchannel: Development of flow and heat transfer correlations
    Lodhi, Mangal Singh
    Sheorey, Tanuja
    Dutta, Goutam
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2020, 234 (18) : 3689 - 3708