Transport and micro-instability analysis of JET H-mode plasma during pellet fueling

被引:6
作者
Klaywittaphat, P. [1 ]
Onjun, T. [1 ]
机构
[1] Thammasat Univ, Sirindhorn Int Inst Technol, Sch Mfg Syst & Mech Engn, Pathum Thani, Thailand
关键词
plasma; fusion; pellet; transport; micro-instability; SIMULATIONS; DENSITY; INJECTION; COLLISIONALITY; TEMPERATURE; CONFINEMENT; PEDESTAL; TOKAMAKS;
D O I
10.1088/0029-5515/57/2/022008
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Transport and micro-instability analysis in a JET H-mode plasma discharge 53212 during the pellet fueling operation is carried out using the BALDUR integrated predictive modeling code with a combination of the NCLASS neoclassical transport model and an anomalous core transport model (either Mixed B/gB or MMM95 model). In this work, the evolution of plasma current, plasma density and temperature profiles is carried out and, consequently, the plasma's behaviors during the pellet operation can be observed. The NGS pellet model with the Grad-B drift effect included is used to describe pellet ablation and its behaviors when a pellet is launched into hot plasma. The simulation shows that after each pellet enters the plasma, there is a strong perturbation on the plasma causing a sudden change of both thermal and particle profiles, as well as the thermal and particle transports. For the simulation using MMM95 transport model, the change of both thermal and particle transports during pellet injection are found to be dominated by the transport due to the resistive ballooning modes due to the increase of collisionality and resistivity near the plasma edge. For the simulation based on mixed B/gB transport model, it is found that the change of transport during the pellet injection is dominated by the Bohm term. Micro-instability analysis of the plasma during the time of pellet operation is also carried out for the simulations based on MMM95 transport model. It is found that the ion temperature gradient mode is destabilized due to an increase of temperature gradient in the pellet effective region, while the trapped electron mode is stabilized due to an increase of collisionality in that region.
引用
收藏
页数:10
相关论文
共 26 条
[1]   Transport and confinement in the mega ampere spherical tokamak (MAST) plasma [J].
Akers, RJ ;
Ahn, JW ;
Antar, GY ;
Appel, LC ;
Applegate, D ;
Brickley, C ;
Bunting, C ;
Carolan, PG ;
Challis, CD ;
Conway, NJ ;
Counsell, GF ;
Dendy, RO ;
Dudson, B ;
Field, AR ;
Kirk, A ;
Lloyd, B ;
Meyer, HF ;
Morris, AW ;
Patel, A ;
Roach, CM ;
Rohzansky, V ;
Sykes, A ;
Taylor, D ;
Tournianski, MR ;
Valovic, M ;
Wilson, HR ;
Axon, KB ;
Buttery, RJ ;
Ciric, D ;
Cunningham, G ;
Dowling, J ;
Dunstan, MR ;
Gee, SJ ;
Gryaznevich, MP ;
Helander, P ;
Keeling, DL ;
Knight, PJ ;
Lott, F ;
Loughlin, MJ ;
Manhood, SJ ;
Martin, R ;
McArdle, GJ ;
Price, MN ;
Stammers, K ;
Storrs, J ;
Walsh, MJ .
PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (12 A) :A175-A204
[2]   Integrated predictive modeling of high-mode tokamak plasmas using a combination of core and pedestal models [J].
Bateman, G ;
Bandrés, MA ;
Onjun, T ;
Kritz, AH ;
Pankin, A .
PHYSICS OF PLASMAS, 2003, 10 (11) :4358-4370
[3]   Predicting temperature and density profiles in tokamaks [J].
Bateman, G ;
Kritz, AH ;
Kinsey, JE ;
Redd, AJ ;
Weiland, J .
PHYSICS OF PLASMAS, 1998, 5 (05) :1793-1799
[4]   Reduction of Edge-Localized Mode Intensity Using High-Repetition-Rate Pellet Injection in Tokamak H-Mode Plasmas [J].
Baylor, L. R. ;
Commaux, N. ;
Jernigan, T. C. ;
Brooks, N. H. ;
Combs, S. K. ;
Evans, T. E. ;
Fenstermacher, M. E. ;
Isler, R. C. ;
Lasnier, C. J. ;
Meitner, S. J. ;
Moyer, R. A. ;
Osborne, T. H. ;
Parks, P. B. ;
Snyder, P. B. ;
Strait, E. J. ;
Unterberg, E. A. ;
Loarte, A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (24)
[5]   Impact of the α parameter on the microstability of internal transport barriers [J].
Bourdelle, C ;
Hoang, GT ;
Litaudon, X ;
Roach, CM ;
Tala, T .
NUCLEAR FUSION, 2005, 45 (02) :110-130
[6]   Model for toroidal velocity in H-mode plasmas in the presence of internal transport barriers [J].
Chatthong, B. ;
Onjun, T. ;
Singhsomroje, W. .
NUCLEAR FUSION, 2010, 50 (06)
[7]   Stability of the trapped electron mode in steep density and temperature gradients [J].
Connor, J. W. ;
Hastie, R. J. ;
Helander, P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (06) :885-900
[8]   Development of a non-local model for tokamak heat transport in L-mode, H-mode and transient regimes [J].
Erba, M ;
Cherubini, A ;
Parail, VV ;
Springmann, E ;
Taroni, A .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (02) :261-276
[9]   Microstability analysis of pellet fuelled discharges in MAST [J].
Garzotti, L. ;
Figueiredo, J. ;
Roach, C. M. ;
Valovic, M. ;
Dickinson, D. ;
Naylor, G. ;
Romanelli, M. ;
Scannell, R. ;
Szepesi, G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (03)
[10]   Particle transport and density profile analysis of JET plasmas [J].
Garzotti, L ;
Garbet, X ;
Mantica, P ;
Parail, V ;
Valovic, M ;
Corrigan, G ;
Heading, D ;
Jones, TTC ;
Lang, P ;
Nordman, H ;
Pégourié, B ;
Saibene, G ;
Spence, J ;
Strand, P ;
Weiland, J .
NUCLEAR FUSION, 2003, 43 (12) :1829-1836