On generalized geometric domain-wall models

被引:2
作者
Zhang, Ruifeng [1 ,2 ]
Wang, Xiaojing [2 ]
机构
[1] Henan Univ, Inst Contemporary Math, Kaifeng City 475001, Henan Province, Peoples R China
[2] Henan Univ, Coll Math & Informat Sci, Kaifeng City 475001, Henan Province, Peoples R China
关键词
SOLITONS;
D O I
10.1017/S0308210510001198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study domain walls that are topological solitons in one dimension. We present an existence theory for the solutions of the basic governing equations of some extended geometrically constrained domain-wall models. When the cross-section and potential density are both even, we establish the existence of an odd domain-wall solution realizing the phase-transition process between two adjacent domain phases. When the cross-section satisfies a certain integrability condition, we prove that a domain-wall solution always exists that links two arbitrarily designated domain phases.
引用
收藏
页码:881 / 895
页数:15
相关论文
共 21 条
[1]   On the Theory of the Exchange Problem and the Appearence of Retentive Ferromagnetic [J].
Bloch, F. .
ZEITSCHRIFT FUR PHYSIK, 1932, 74 (5-6) :295-335
[2]   Geometrically constrained magnetic wall [J].
Bruno, P .
PHYSICAL REVIEW LETTERS, 1999, 83 (12) :2425-2428
[3]   Phase transition solutions in geometrically constrained magnetic domain wall models [J].
Chen, Shouxin ;
Yang, Yisong .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[4]   Thermodynamic instabilities in one dimension: Correlations, scaling and solitons [J].
Dauxois, T ;
Theodorakopoulos, N ;
Peyrard, M .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :869-891
[5]   NATURE OF THE OPEN STATE IN LONG POLYNUCLEOTIDE DOUBLE HELICES - POSSIBILITY OF SOLITON EXCITATIONS [J].
ENGLANDER, SW ;
KALLENBACH, NR ;
HEEGER, AJ ;
KRUMHANSL, JA ;
LITWIN, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (12) :7222-7226
[6]   Domain walls with non-Abelian clouds [J].
Eto, Minoru ;
Fujimori, Toshiaki ;
Nitta, Muneto ;
Ohashi, Keisuke ;
Sakai, Norisuke .
PHYSICAL REVIEW D, 2008, 77 (12)
[7]   DYNAMICS OF SINE-GORDON SOLITONS IN PRESENCE OF PERTURBATIONS [J].
FOGEL, MB ;
TRULLINGER, SE ;
BISHOP, AR ;
KRUMHANSL, JA .
PHYSICAL REVIEW B, 1977, 15 (03) :1578-1592
[8]   Transition to linear domain walls in nanoconstrictions [J].
Kazantseva, N ;
Wieser, R ;
Nowak, U .
PHYSICAL REVIEW LETTERS, 2005, 94 (03)
[9]  
Landau L., 1935, Perspectives in Theoretical Physics, V8, P153
[10]  
Lin FH, 2007, CONTEMP MATH, V446, P319