Reconstruction of a velocity field for a 3-D advection-diffusion equation

被引:2
|
作者
Dou, Yi-Xin [1 ]
Han, Bo [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
关键词
Advection-diffusion equation; Inverse problem; l(1) data fidelity; Total variation penalty term; (U-TH)/HE THERMOCHRONOMETRY; INVERSE PROBLEM; HE DIFFUSION; REGULARIZATION; PARAMETER; ZIRCON; TECTONICS; EVOLUTION; TRANSPORT; HELIUM;
D O I
10.1016/j.ijthermalsci.2011.08.002
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work deals with the reconstruction of a piecewise constant velocity field for a 3-D advection-diffusion equation. Reconstructing a velocity field often plays an important role in understanding the formation and evolution of orogenic topography. In order to suppress measurement errors and to identify sharp features, we propose a new regularization integrating an l(1) data fidelity with a total variation(1) penalty term to reconstruct a piecewise constant velocity field. For testing the performance of our proposed regularization method, we compare four different regularization methods. From numerical experiments, we can draw conclusions: (I) an l(1) data fidelity can suppress measurement errors including Gaussian noise and non-Gaussian noise; (II) a total variation penalty term has the ability to identify sharp features. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:2340 / 2354
页数:15
相关论文
共 50 条
  • [41] Numerical Method for Fractional Advection-Diffusion Equation with Heredity
    Pimenov V.G.
    Journal of Mathematical Sciences, 2018, 230 (5) : 737 - 741
  • [42] Lattice Boltzmann method for the fractional advection-diffusion equation
    Zhou, J. G.
    Haygarth, P. M.
    Withers, P. J. A.
    Macleod, C. J. A.
    Falloon, P. D.
    Beven, K. J.
    Ockenden, M. C.
    Forber, K. J.
    Hollaway, M. J.
    Evans, R.
    Collins, A. L.
    Hiscock, K. M.
    Wearing, C.
    Kahana, R.
    Velez, M. L. Villamizar
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [43] Taylor-Galerkin method for advection-diffusion equation
    Dag, Idris
    Canivar, Aynur
    Sahin, Ali
    KYBERNETES, 2011, 40 (5-6) : 762 - 777
  • [44] Single collocation point methods for the advection-diffusion equation
    Herrera, I
    Díaz-Viera, M
    Yates, R
    ADVANCES IN WATER RESOURCES, 2004, 27 (04) : 311 - 322
  • [45] A solution of the time-dependent advection-diffusion equation
    Tirabassi, Tiziano
    Silva, Everson J. G.
    Buske, Daniela
    Vilhena, Marco T.
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2019, 65 (1-3) : 211 - 228
  • [46] A POD-BASED SOLVER FOR THE ADVECTION-DIFFUSION EQUATION
    Merzari, Elia
    Pointer, W. David
    Fischer, Paul
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE 2011, VOL 1, PTS A-D, 2012, : 1139 - 1147
  • [47] Resolution of advection-diffusion equation in presence of sharp gradient
    Sart, C
    Ouahsine, A
    Louaked, M
    Bois, PA
    COMPTES RENDUS MECANIQUE, 2002, 330 (03): : 159 - 165
  • [48] FINITE-DIFFERENCE APPROXIMATIONS TO THE ADVECTION-DIFFUSION EQUATION
    WRIGHT, DG
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1992, 44A (03) : 261 - 269
  • [49] Finite difference approximations for the fractional advection-diffusion equation
    Su, Lijuan
    Wang, Wenqia
    Yang, Zhaoxia
    PHYSICS LETTERS A, 2009, 373 (48) : 4405 - 4408
  • [50] AN APPROXIMATE SOLUTION TO THE ADVECTION-DIFFUSION EQUATION AS APPLIED TO AN ESTUARY
    WANG, ST
    MCMILLAN, AF
    CHEN, BH
    JOURNAL OF HYDROLOGY, 1980, 48 (3-4) : 251 - 268