Reconstruction of a velocity field for a 3-D advection-diffusion equation

被引:2
|
作者
Dou, Yi-Xin [1 ]
Han, Bo [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
关键词
Advection-diffusion equation; Inverse problem; l(1) data fidelity; Total variation penalty term; (U-TH)/HE THERMOCHRONOMETRY; INVERSE PROBLEM; HE DIFFUSION; REGULARIZATION; PARAMETER; ZIRCON; TECTONICS; EVOLUTION; TRANSPORT; HELIUM;
D O I
10.1016/j.ijthermalsci.2011.08.002
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work deals with the reconstruction of a piecewise constant velocity field for a 3-D advection-diffusion equation. Reconstructing a velocity field often plays an important role in understanding the formation and evolution of orogenic topography. In order to suppress measurement errors and to identify sharp features, we propose a new regularization integrating an l(1) data fidelity with a total variation(1) penalty term to reconstruct a piecewise constant velocity field. For testing the performance of our proposed regularization method, we compare four different regularization methods. From numerical experiments, we can draw conclusions: (I) an l(1) data fidelity can suppress measurement errors including Gaussian noise and non-Gaussian noise; (II) a total variation penalty term has the ability to identify sharp features. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:2340 / 2354
页数:15
相关论文
共 50 条
  • [31] PARAMETER ESTIMATION IN NONLINEAR COUPLED ADVECTION-DIFFUSION EQUATION
    Ferdinand, Robert R.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2007, 2 (01): : 1 - 13
  • [32] THREE DIMENSIONS ADVECTION-DIFFUSION EQUATION IN UNSTABLE CONDITION
    Essa, Khaled S. M.
    EL Said, Sawsan E. M.
    REVUE ROUMAINE DE CHIMIE, 2023, 68 (10-12) : 507 - 513
  • [33] STABILITY OF THE CHEBYSHEV COLLOCATION APPROXIMATION TO THE ADVECTION-DIFFUSION EQUATION
    MOFID, A
    PEYRET, R
    COMPUTERS & FLUIDS, 1993, 22 (4-5) : 453 - 465
  • [34] Finite time Lyapunov exponent and advection-diffusion equation
    Tang, XZ
    Boozer, AH
    PHYSICA D-NONLINEAR PHENOMENA, 1996, 95 (3-4) : 283 - 305
  • [35] A Novel Algorithm for Time Fractional Advection-Diffusion Equation
    Zhang, Ping
    Zhang, Yingchao
    Jia, Yuntao
    Lin, Yingzhen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [36] Solutions of the atmospheric advection-diffusion equation by the laplace transformation
    Moreira, D. M.
    de Vilhena, M. T.
    Tirabassi, T.
    Bodmann, B. E. J.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: TECHNIQUES AND APPLICATIONS, 2008, : 171 - +
  • [37] Advection-Diffusion Equation for Prediction of Air Pollution Parameters
    Dione, Dethie
    Kone, Bakary
    Dosso, Mouhamadou
    Esperance, Tape Grace
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2024, 13 (04) : 683 - 704
  • [38] On stable and explicit numerical methods for the advection-diffusion equation
    Witek, Marcin L.
    Teixeira, Joao
    Flatau, Piotr J.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) : 561 - 570
  • [39] On solutions of time-fractional advection-diffusion equation
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4489 - 4516
  • [40] A spectral embedding method applied to the advection-diffusion equation
    Elghaoui, M
    Pasquetti, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (02) : 464 - 476