ANALYSIS OF PHOW REPRESENTATIONS FOR ALZHEIMER DISEASE CLASSIFICATION ON BRAIN STRUCTURAL MRI

被引:1
作者
Mendoza-Leon, Ricardo [1 ,2 ]
Gonzalez, Fabio A. [3 ]
Arbelaez, Pablo [4 ]
Puentes, John [2 ]
Hernandez Hoyos, Marcela [1 ]
机构
[1] Univ Los Andes, Sch Engn, Dept Syst & Comp Engn, Bogota, Colombia
[2] Inst Mines Telecom, Telecom Bretagne, Dept Image & Traitement Informat, Lab STICC UMR CNRS Equipe DECIDE 6285, Brest, France
[3] Univ Nacl Colombia, MindLab Res Grp, Bogota, Colombia
[4] Univ Los Andes, Sch Engn, Dept Biomed Engn, Bogota, Colombia
来源
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2016年
关键词
Alzheimer's classification; PHOW; support vector machine; bag of words; structural MRI; DIAGNOSIS;
D O I
10.1109/ISBI.2016.7493202
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Alzheimer's Disease (AD) is a neurodegenerative pathology characterized by progressive atrophy of brain and impairment of memory and cognitive functions. Physicians frequently use structural brain imaging to identify abnormal patterns in brain structure that may indicate probable AD. Thus, shape information is central for brain imaging analysis and AD diagnosis. This paper examines how three variants of Pyramid Histograms Of visual Words (PHOW) descriptions, a data-driven approach, handle the complex task of AD classification. 87 pathological cases and 87 controls from OASIS dataset were used to study the impact of shape and surface information. Best performance was 89.3%, a current mark for AD classification, and an increase (27.1%) in contrast to a naive approach. Additionally, controls were better classified than demented subjects (94.5% and 84.0%, respectively), while young, early-onset AD subjects, and elderly controls were the most difficult. Finally, dictionary word analysis revealed discriminative surface features. Also, local patterns induced by global word distribution appear to be more significant for classification than word location.
引用
收藏
页码:24 / 27
页数:4
相关论文
共 14 条
  • [1] [Anonymous], 2007, P 6 ACM INT C IM VID, DOI [DOI 10.1145/1282280.1282340, 10.1145/1282280.1282340]
  • [2] [Anonymous], 2014, FRONT NEUROL
  • [3] Bron E, 2014, LECT NOTES COMPUT SC, V8679, P272, DOI 10.1007/978-3-319-10581-9_34
  • [4] Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge
    Bron, Esther E.
    Smits, Marion
    van der Flier, Wiesje M.
    Vrenken, Hugo
    Barkhof, Frederik
    Scheltens, Philip
    Papma, Janne M.
    Steketee, Rebecca M. E.
    Orellana, Carolina Mendez
    Meijboom, Rozanna
    Pinto, Madalena
    Meireles, Joana R.
    Garrett, Carolina
    Bastos-Leite, Antonio J.
    Abdulkadir, Ahmed
    Ronneberger, Olaf
    Amoroso, Nicola
    Bellotti, Roberto
    Cardenas-Pena, David
    Alvarez-Meza, Andres M.
    Dolph, Chester V.
    Iftekharuddin, Khan M.
    Eskildsen, Simon F.
    Coupe, Pierrick
    Fonov, Vladimir S.
    Franke, Katja
    Gaser, Christian
    Ledig, Christian
    Guerrero, Ricardo
    Tong, Tong
    Gray, Katherine R.
    Moradi, Elaheh
    Tohka, Jussi
    Routier, Alexandre
    Durrleman, Stanley
    Sarica, Alessia
    Di Fatta, Giuseppe
    Sensi, Francesco
    Chincarini, Andrea
    Smith, Garry M.
    Stoyanov, Zhivko V.
    Sorensen, Lauge
    Nielsen, Mads
    Tangaro, Sabina
    Inglese, Paolo
    Wachinger, Christian
    Reuter, Martin
    van Swieten, John C.
    Niessen, Wiro J.
    Klein, Stefan
    [J]. NEUROIMAGE, 2015, 111 : 562 - 579
  • [5] Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
    Cuingnet, Remi
    Gerardin, Emilie
    Tessieras, Jerome
    Auzias, Guillaume
    Lehericy, Stephane
    Habert, Marie-Odile
    Chupin, Marie
    Benali, Habib
    Colliot, Olivier
    [J]. NEUROIMAGE, 2011, 56 (02) : 766 - 781
  • [6] Lazebnik S., COMPUTER VISION PATT, V2, P2169
  • [7] Maji S., 2008, CVPR
  • [8] Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
    Marcus, Daniel S.
    Wang, Tracy H.
    Parker, Jamie
    Csernansky, John G.
    Morris, John C.
    Buckner, Randy L.
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2007, 19 (09) : 1498 - 1507
  • [9] Mondal Prasenjit, 2014, 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), P342, DOI 10.1109/MedCom.2014.7006030
  • [10] LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer's disease
    Ortiz, Andres
    Gorriz, Juan M.
    Ramirez, Javier
    Martinez-Murcia, F. J.
    [J]. PATTERN RECOGNITION LETTERS, 2013, 34 (14) : 1725 - 1733