A Geometric Numerical Integration of Lie-Poisson System for Ideal Compressible Isentropic Fluid

被引:0
作者
Nobari, Elham [1 ]
Hosseini, S. Mohammad [2 ]
机构
[1] Univ Sci & Technol Mazandaran, Dept Math, POB 48518-78195, Behshahr, Iran
[2] Tarbiat Modares Univ, Dept Math, POB 14115-175, Tehran, Iran
来源
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS | 2021年 / 16卷 / 02期
关键词
Ideal compressible isentropic fluid; Lie-Poisson system; Semidirect product; Geometric integration; Coadjoint orbit;
D O I
10.29252/ijmsi.16.2.181
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we apply a geometric integrator to the problem of Lie-Poisson system for ideal compressible isentropic fluids (ICIF) numerically. Our work is based on the decomposition of the phase space, as the semidirect product of two infinite dimensional Lie groups. We have shown that the solution of (ICIF) stays in coadjoint orbit and this result extends a similar result for matrix group discussed in [6]. By using the coadjoint action of the Lie group on the dual of its Lie algebra to advance the numerical flow, we (as in [2]) devise methods that automatically stay on the coadjoint orbit. The paper concludes with a concrete example.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 16 条