Malleable and Recyclable Thermosets: The Next Generation of Plastics

被引:249
作者
Jin, Yinghua [1 ]
Lei, Zepeng [2 ]
Taynton, Philip [2 ]
Huang, Shaofeng [2 ]
Zhang, Wei [2 ]
机构
[1] NCO Technol, Longmont, CO 80501 USA
[2] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
关键词
COVALENT POLYMER NETWORKS; GLASS-TRANSITION; DYNAMIC EXCHANGE; CROSS-LINKING; ORGANIC CAGE; VITRIMERS; CHEMISTRY; TRANSALKYLATION; POLYURETHANE; MACROCYCLES;
D O I
10.1016/j.matt.2019.09.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Malleable thermosets are crosslinked polymers containing dynamic covalent bonds, which can be reversibly cleaved and reformed. They have attracted considerable attention in recent years due to their combined advantages of thermosets and thermoplastics. They have excellent mechanical properties and thermal and chemical stabilities like traditional thermosets yet are reprocessable and recyclable like thermoplastics. Although the chemical composition plays an important role in determining the mechanical and thermal properties of materials, the application of dynamic covalent chemistry is the key to achieving the unique properties of malleable thermosets. The mechanism of reversible bond cleavage and reformation, bond activation energies and kinetics, and the conditions triggering such reversibility define the malleable properties of the materials, how and why they can be reprocessed, and when the materials fail. In this review, we introduce fundamental concepts and principles of malleable thermosets, dynamic covalent chemistry, and the characteristic materials properties, including reprocessability, rehealability, and possible recyclability. We categorize the recent literature examples based on the underlying chemistry to demonstrate how dynamic covalent chemistry is exploited inmalleable thermosets and how their malleable properties can be achieved and altered; we also discuss intriguing future opportunities based on such exploitation.
引用
收藏
页码:1456 / 1493
页数:38
相关论文
共 97 条
  • [1] Alkonis J.J., 1983, Introduction to polymer viscoelasticity, V2nd
  • [2] Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution
    Altuna, Facundo I.
    Pettarin, Valeria
    Williams, Roberto J. J.
    [J]. GREEN CHEMISTRY, 2013, 15 (12) : 3360 - 3366
  • [3] Dynamic imine chemistry
    Belowich, Matthew E.
    Stoddart, J. Fraser
    [J]. CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2003 - 2024
  • [4] Polylactide Vitrimers
    Brutman, Jacob P.
    Delgado, Paula A.
    Hillmyer, Marc A.
    [J]. ACS MACRO LETTERS, 2014, 3 (07): : 607 - 610
  • [5] Self-Healing Materials Based on Disulfide Links
    Canadell, Judit
    Goossens, Han
    Klumperman, Bert
    [J]. MACROMOLECULES, 2011, 44 (08) : 2536 - 2541
  • [6] Catalytic Control of the Vitrimer Glass Transition
    Capelot, Mathieu
    Unterlass, Miriam M.
    Tournilhac, Francois
    Leibler, Ludwik
    [J]. ACS MACRO LETTERS, 2012, 1 (07): : 789 - 792
  • [7] Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets
    Capelot, Mathieu
    Montarnal, Damien
    Tournilhac, Francois
    Leibler, Ludwik
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (18) : 7664 - 7667
  • [8] Maximizing the symbiosis of static and dynamic bonds in self-healing boronic ester networks
    Cash, Jessica J.
    Kubo, Tomohiro
    Dobbins, Daniel J.
    Sumerlin, Brent S.
    [J]. POLYMER CHEMISTRY, 2018, 9 (15) : 2011 - 2020
  • [9] Room-Temperature Self-Healing Polymers Based on Dynamic-Covalent Boronic Esters
    Cash, Jessica J.
    Kubo, Tomohiro
    Bapat, Abhijeet P.
    Sumerlin, Brent S.
    [J]. MACROMOLECULES, 2015, 48 (07) : 2098 - 2106
  • [10] Dynamic Covalent Polymer Networks Based on Degenerative Imine Bond Exchange: Tuning the Malleability and Self-Healing Properties by Solvent
    Chao, Albert
    Negulescu, Joan
    Zhang, Donghui
    [J]. MACROMOLECULES, 2016, 49 (17) : 6277 - 6284