Reweighted Kernel-Based Nonlinear Hyperspectral Unmixing With Regional l1-Norm Regularization

被引:1
作者
Gu, Jiafeng [1 ,2 ]
Cheng, Tongkai [1 ,2 ]
Wang, Bin [1 ,2 ]
机构
[1] Fudan Univ, Key Lab Informat Sci Electromagnet Waves MoE, Shanghai 200433, Peoples R China
[2] Fudan Univ, Res Ctr Smart Networks & Syst, Sch Informat Sci & Technol, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral images (HSIs); kernel; nonlinear unmixing; superpixel segmentation;
D O I
10.1109/LGRS.2021.3083403
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Improving the performance of nonlinear unmixing has become an active topic among the remote sensing applications. Usually, the noise levels of hyperspectral images (HSIs) vary with different bands. However, this fact is generally ignored and may, to some extent, result in a degradation of the unmixing results. Nonetheless, valuable spatial information that provides a great potential for improving the performance has seldom been considered in the current nonlinear unmixing. In this letter, we propose a novel kernel-based nonlinear unmixing model in which the band-wise noise characterization and the spatial relationships of HSIs are incorporated to solve the above problems. Firstly, the noise levels of different bands are estimated based on the results of superpixel segmentation, and then they are used to characterize the roles of different bands in the unmixing process. To exploit the spatial relationships in the superpixels, a regional l(1)-norm regularization is proposed and incorporated into the unmixing model. Experimental results on both synthetic and real hyperspectral datasets demonstrate the superiority of the proposed model compared to the state-of-the-art nonlinear unmixing methods.
引用
收藏
页数:5
相关论文
empty
未找到相关数据