Entailment Processing for Large RDF Data Sets Using GPU

被引:0
作者
Chantrapornchai, Chantana [1 ]
Choksuchat, Chidchanok [2 ]
Haidl, Michael [3 ]
Gorlatch, Sergei [3 ]
机构
[1] Kasetsart Univ, Dept Comp Engn, Bangkok, Thailand
[2] Silpakorn Univ, Dept Comp, Bangkok, Thailand
[3] Univ Munster, CiM Cluster Excellence, Munster, Germany
来源
NEW TRENDS IN SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES | 2016年 / 286卷
关键词
entailment processing; reasoning; query processing; parallel processing; GPU; RDF; CUDA;
D O I
10.3233/978-1-61499-674-3-333
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the Semantic Web, the Resource Description Framework (RDF) has become the standard representation to describe Internet resources. RDF data is structured in triples comprising a subject, a predicate and an object: the predicate defines the relation between subject and object. The RDF Schema (RDFS) extends raw RDF data with a standardized vocabulary to allow for entailment, e.g., type inheritance or type inference. Processing large RDF data sets, which are commonly stored as text files, is a time-intensive task: querying and entailment on RDF data requires a huge amount of computational power and storage. We propose TripleID - a framework for RDF querying and entailment processing. TripleID provides a novel, compressed file format for RDF data and utilizes Graphics Processing Units (GPUs) for accelerated, highly parallelized data processing. We demonstrate the advantages of our framework on real-world RDF data: TripleID reduces storage size for RDF data by up to 75% and accelerates querying and entailment processing up to 40 times as compared to the state-of-the-art tools that use conventional CPUs.
引用
收藏
页码:333 / 345
页数:13
相关论文
共 13 条
  • [1] Andreas Harth, 2009, BILL TRIPL CHALL 200
  • [2] Atre Medha., 2010, WWW, P41, DOI DOI 10.1145/1772690.1772696
  • [3] DBpedia - A crystallization point for the Web of Data
    Bizer, Christian
    Lehmann, Jens
    Kobilarov, Georgi
    Auer, Soeren
    Becker, Christian
    Cyganiak, Richard
    Hellmann, Sebastian
    [J]. JOURNAL OF WEB SEMANTICS, 2009, 7 (03): : 154 - 165
  • [4] TripleID: A Low-Overhead Representation and Querying Using GPU for Large RDFs
    Chantrapornchai, Chantana
    Choksuchat, Chidchanok
    Haidl, Michael
    Gorlatch, Sergei
    [J]. BEYOND DATABASES, ARCHITECTURES AND STRUCTURES, BDAS 2016, 2016, 613 : 400 - 415
  • [5] He B., 2008, SIGMOD, DOI DOI 10.1145/1376616.1376670
  • [6] Heino Norman, 2012, The Semantic Web. 11th International Semantic Web Conference (ISWC 2012). Proceedings, P133, DOI 10.1007/978-3-642-35176-1_9
  • [7] Kim Y., 2015, P 7 INT C ADV DAT KN, P70
  • [8] Madduri Kamesh, 2011, Scientific and Statistical Database Management. Proceedings 23rd International Conference, SSDBM 2011, P470, DOI 10.1007/978-3-642-22351-8_30
  • [9] Makni Bassem, 2013, P ISWC
  • [10] NVIDIA, 2015, NVIDIA GPU PROGR GUI