Transverse Conductance of DNA Nucleotides in a Graphene Nanogap from First Principles

被引:168
作者
Prasongkit, Jariyanee [1 ]
Grigoriev, Anton [1 ]
Pathak, Biswarup [1 ]
Ahuja, Rajeev [1 ,2 ]
Scheicher, Ralph H. [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Condensed Matter Theory Grp, SE-75120 Uppsala, Sweden
[2] Royal Inst Technol KTH, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
DNA sequencing; graphene; nanogap; ab initio; electronic transport; molecular electronics; TRANSLOCATION;
D O I
10.1021/nl200147x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication of nanopores in atomically thin graphene has recently been achieved, and translocation of DNA has been demonstrated. Taken together with an earlier proposal to use graphene nanogaps for the purpose of DNA sequencing, this approach can resolve the technical problem of achieving single-base resolution in electronic nucleobase detection. We have theoretically evaluated the performance of a graphene nanogap setup for the purpose of whole-genome sequencing, by employing density functional theory and the nonequilibrium Green's function method to investigate the transverse conductance properties of nucleotides inside the gap. In particular, we determined the electrical tunneling current variation at finite bias due to changes in the nucleotides orientation and lateral position. Although the resulting tunneling current is found to fluctuate over several orders of magnitude, a distinction between the four DNA bases appears possible, thus ranking the approach promising for rapid whole-genome sequencing applications.
引用
收藏
页码:1941 / 1945
页数:5
相关论文
共 33 条
  • [31] EFFICIENT PSEUDOPOTENTIALS FOR PLANE-WAVE CALCULATIONS
    TROULLIER, N
    MARTINS, JL
    [J]. PHYSICAL REVIEW B, 1991, 43 (03) : 1993 - 2006
  • [32] Control of Shape and Material Composition of Solid-State Nanopores
    Wu, Meng-Yue
    Smeets, Ralph M. M.
    Zandbergen, Mathijs
    Ziese, Ulrike
    Krapf, Diego
    Batson, Philip E.
    Dekker, Nynke H.
    Dekker, Cees
    Zandbergen, Henny W.
    [J]. NANO LETTERS, 2009, 9 (01) : 479 - 484
  • [33] Electronic signature of DNA nucleotides via transverse transport
    Zwolak, M
    Di Ventra, M
    [J]. NANO LETTERS, 2005, 5 (03) : 421 - 424