Transverse Conductance of DNA Nucleotides in a Graphene Nanogap from First Principles

被引:168
作者
Prasongkit, Jariyanee [1 ]
Grigoriev, Anton [1 ]
Pathak, Biswarup [1 ]
Ahuja, Rajeev [1 ,2 ]
Scheicher, Ralph H. [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Condensed Matter Theory Grp, SE-75120 Uppsala, Sweden
[2] Royal Inst Technol KTH, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
DNA sequencing; graphene; nanogap; ab initio; electronic transport; molecular electronics; TRANSLOCATION;
D O I
10.1021/nl200147x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication of nanopores in atomically thin graphene has recently been achieved, and translocation of DNA has been demonstrated. Taken together with an earlier proposal to use graphene nanogaps for the purpose of DNA sequencing, this approach can resolve the technical problem of achieving single-base resolution in electronic nucleobase detection. We have theoretically evaluated the performance of a graphene nanogap setup for the purpose of whole-genome sequencing, by employing density functional theory and the nonequilibrium Green's function method to investigate the transverse conductance properties of nucleotides inside the gap. In particular, we determined the electrical tunneling current variation at finite bias due to changes in the nucleotides orientation and lateral position. Although the resulting tunneling current is found to fluctuate over several orders of magnitude, a distinction between the four DNA bases appears possible, thus ranking the approach promising for rapid whole-genome sequencing applications.
引用
收藏
页码:1941 / 1945
页数:5
相关论文
共 33 条
  • [1] Geometry and electronic structure of M-DNA (M=Zn2+, Co2+, and Fe2+)
    Alexandre, Simone S.
    Soler, Jose M.
    Seijo, Luis
    Zamora, Felix
    [J]. PHYSICAL REVIEW B, 2006, 73 (20)
  • [2] Small polarons in dry DNA
    Alexandre, SS
    Artacho, E
    Soler, JM
    Chacham, H
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (10)
  • [3] The potential and challenges of nanopore sequencing
    Branton, Daniel
    Deamer, David W.
    Marziali, Andre
    Bayley, Hagan
    Benner, Steven A.
    Butler, Thomas
    Di Ventra, Massimiliano
    Garaj, Slaven
    Hibbs, Andrew
    Huang, Xiaohua
    Jovanovich, Stevan B.
    Krstic, Predrag S.
    Lindsay, Stuart
    Ling, Xinsheng Sean
    Mastrangelo, Carlos H.
    Meller, Amit
    Oliver, John S.
    Pershin, Yuriy V.
    Ramsey, J. Michael
    Riehn, Robert
    Soni, Gautam V.
    Tabard-Cossa, Vincent
    Wanunu, Meni
    Wiggin, Matthew
    Schloss, Jeffery A.
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (10) : 1146 - 1153
  • [4] Defect-controlled electronic transport in single, bilayer, and N-doped graphene: Theory
    Carva, K.
    Sanyal, B.
    Fransson, J.
    Eriksson, O.
    [J]. PHYSICAL REVIEW B, 2010, 81 (24)
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
  • [7] Solid-state nanopores
    Dekker, Cees
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (04) : 209 - 215
  • [8] Nanopore DNA sequencing with MspA
    Derrington, Ian M.
    Butler, Tom Z.
    Collins, Marcus D.
    Manrao, Elizabeth
    Pavlenok, Mikhail
    Niederweis, Michael
    Gundlach, Jens H.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (37) : 16060 - 16065
  • [9] Electron beam nanosculpting of suspended graphene sheets
    Fischbein, Michael D.
    Drndic, Marija
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (11)
  • [10] Graphene as a subnanometre trans-electrode membrane
    Garaj, S.
    Hubbard, W.
    Reina, A.
    Kong, J.
    Branton, D.
    Golovchenko, J. A.
    [J]. NATURE, 2010, 467 (7312) : 190 - U73