On the super domination number of graphs

被引:8
作者
Klein, Douglas J. [1 ]
Rodriguez-Velazquez, Juan A. [2 ]
Yi, Eunjeong [1 ]
机构
[1] Texas A&M Univ, Fdn Sci, POB 1675, Galveston, TX 77553 USA
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
关键词
Super domination number; Domination number; Cartesian product; Corona product;
D O I
10.22049/CCO.2019.26587.1122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The open neighborhood of a vertex v of a graph G is the set N (v) consisting of all vertices adjacent to v in G. For D subset of V (G), we define (D) over bar subset of V (G) \ D. A set D subset of V (G) is called a super dominating set of G if for every vertex u is an element of(D) over bar, there exists v is an element of D such that N (v) boolean AND (D) over bar = {u}. The super domination number of G is the minimum cardinality among all super dominating sets of G. In this paper, we obtain closed formulas and tight bounds for the super domination number of G in terms of several invariants of G. We also obtain results on the super domination number of corona product graphs and Cartesian product graphs.
引用
收藏
页码:83 / 96
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 1998, Fundamentals of Domination in Graphs
[2]   GRAPH-THEORETIC PARAMETERS CONCERNING DOMINATION, INDEPENDENCE, AND IRREDUNDANCE [J].
BOLLOBAS, B ;
COCKAYNE, EJ .
JOURNAL OF GRAPH THEORY, 1979, 3 (03) :241-249
[3]   Vizing's conjecture: a survey and recent results [J].
Bresar, Bostjan ;
Dorbec, Paul ;
Goddard, Wayne ;
Hartnell, Bert L. ;
Henning, Michael A. ;
Klavzar, Sandi ;
Rall, Douglas F. .
JOURNAL OF GRAPH THEORY, 2012, 69 (01) :46-76
[4]  
Cockayne EJ, 2005, UTILITAS MATHEMATICA, V67, P19
[5]  
Denes K., 1931, Mat. Lapok., V38, P116
[6]   On the super domination number of lexicographic product graphs [J].
Dettlaff, M. ;
Lemanska, M. ;
Rodriguez-Velazquez, J. A. ;
Zuazua, R. .
DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) :118-129
[7]  
Egervary Jeno, 1931, Mat. Lapok, V38, P16
[8]  
Frucht R., 1970, AEQUATIONES MATH, V4, P322, DOI [10.1007/BF01844162, DOI 10.1007/BF01844162]
[9]  
Hammack R, 2011, Handbook of Product Graphs, Discrete Mathematics and its Applications, V2nd, DOI DOI 10.1201/B10959
[10]   A SURVEY OF THE THEORY OF HYPERCUBE GRAPHS [J].
HARARY, F ;
HAYES, JP ;
WU, HJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 15 (04) :277-289