On the cyclic torsion of elliptic curves over cubic number fields

被引:4
作者
Wang, Jian [1 ,2 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Torsion subgroup; Elliptic curves; Modular curves; POINTS; BOUNDS;
D O I
10.1016/j.jnt.2017.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve defined over a number field K. Then its Mordell-Weil group E(K) is finitely generated: E(K) congruent to E{K)(tor) x Z(r) . In this paper, we discuss the cyclic torsion subgroup of elliptic curves over cubic number fields. For N = 169, 143, 91, 65, 77 or 55, we show that Z/NZ is not a subgroup of E(K)(tor) for any elliptic curve E over a cubic number field K. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 36 条
  • [1] [Anonymous], TORSION COURBES ELLI
  • [2] [Anonymous], GRAD STUD MATH
  • [3] [Anonymous], 1967, I HAUTES ETUDES SCI
  • [4] [Anonymous], 2005, GRAD TEXTS MATH
  • [5] [Anonymous], 1994, GRAD TEXTS MATH
  • [6] [Anonymous], COMMUNICATION
  • [7] Bosch S., 1990, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Results in Mathematics and Related Areas (3), V21
  • [8] CASSELS JWS, 1949, P CAMB PHILOS SOC, V45, P167
  • [9] Arithmetic moduli of generalized elliptic curves
    Conrad, Brian
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2007, 6 (02) : 209 - 278
  • [10] Deligne P., 1973, Lect. Notes Math., V349, P143