Missing data in time series: A note on the equivalence of the dummy variable and the skipping approaches

被引:2
作者
Proietti, Tommaso [1 ]
机构
[1] Dipartimento SEF & MEQ, I-00133 Rome, Italy
关键词
Kalman filter; smoothing; influence; cross-validation;
D O I
10.1016/j.spl.2007.05.031
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This note shows the equivalence of the dummy variable approach and the skipping approach for the treatment of missing observations in state space models. The equivalence holds when the coefficient of the dummy variable is considered as a diffuse rather than a fixed effect. The equivalence concerns both likelihood inference and smoothed inferences. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 13 条
[1]  
BELL WR, 1989, J R STAT SOC B, V51, P408
[2]  
BRUCE AG, 1989, J ROY STAT SOC B MET, V51, P363
[3]   Diagnosing shocks in time series [J].
de Jong, P ;
Penzer, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) :796-806
[4]   SMOOTHING AND INTERPOLATION WITH THE STATE-SPACE MODEL [J].
DEJONG, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :1085-1088
[5]  
DEJONG P, 1991, ANN STAT, V19, P1073
[6]  
DEJONG P, 1996, FIXED INTERVAL SMOOT
[7]  
Fuller W.A., 1996, INTRO STAT TIME SERI, V2nd
[8]   Missing observations in ARIMA models: Skipping approach versus additive outlier approach [J].
Gomez, V ;
Maravall, A ;
Pena, D .
JOURNAL OF ECONOMETRICS, 1999, 88 (02) :341-363
[9]  
HARVEY AC, 1998, ADV EC, V13
[10]   DISTURBANCE SMOOTHER FOR STATE-SPACE MODELS [J].
KOOPMAN, SJ .
BIOMETRIKA, 1993, 80 (01) :117-126