Mostow-Margulis rigidity with locally compact targets

被引:24
作者
Furman, A [1 ]
机构
[1] Univ Illinois, Dept Math, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/PL00001671
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be a lattice in a simple higher rank Lie group G. We describe all locally compact (not necessarily Lie) groups H in which Gamma call be embedded as a lattice. For lattices Gamma in rank one groups G (with the only exception of non-uniform lattices in G similar or equal to SL2(R), which are virtually free groups) we give a similar description of all possible locally compact groups H, in which Gamma can be embedded as a uniform lattice.
引用
收藏
页码:30 / 59
页数:30
相关论文
共 23 条
[1]  
[Anonymous], PUBL MATH DEC
[2]  
CHOW R, 1992, T AMS, V348, P419
[3]   Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces [J].
Eskin, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (02) :321-361
[4]   Quasi-flats and rigidity in higher rank symmetric spaces [J].
Eskin, A ;
Farb, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (03) :653-692
[5]  
Farb B, 1997, MATH RES LETT, V4, P705
[6]  
Farb B, 1996, J DIFFER GEOM, V44, P435
[7]   Gromov's measure equivalence and rigidity of higher rank lattices [J].
Furman, A .
ANNALS OF MATHEMATICS, 1999, 150 (03) :1059-1081
[8]   CONVERGENCE GROUPS ARE FUCHSIAN-GROUPS [J].
GABAI, D .
ANNALS OF MATHEMATICS, 1992, 136 (03) :447-510
[9]  
GROMOV M, 1991, LECT NOTES MATH, V1504, P39
[10]  
GROMOV M, LMS LECT NOTE SER, V182