Comparative Proteomics of Contrasting Maize, Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms

被引:57
|
作者
Luo, Meijie [1 ]
Zhao, Yanxin [1 ]
Wang, Yuandong [1 ]
Shi, Zi [1 ]
Zhang, Panpan [1 ]
Zhang, Yunxia [1 ]
Song, Wei [1 ]
Zhao, Jiuran [1 ]
机构
[1] BAAFS, Maize Res Ctr, Beijing Key Lab Maize DNA Fingerprinting & Mol Bre, Beijing 100097, Peoples R China
关键词
maize; salt tolerance; seedling root; comparative proteomic analysis; iTRAQ; RESPONSIVE PROTEINS; GLUTAMINE-SYNTHETASE; SALINITY; IDENTIFICATION; DEFENSE; CYCLE; NACL;
D O I
10.1021/acs.jproteome.7b00455
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Salt stress is a major abiotic factor limiting maize yield. To characterize the mechanism underlying maize salt tolerance, we compared the seedling root proteomes of salt-tolerant Jing724 and salt-sensitive D9H. The germination rate and growth parameter values (weight and length) were higher for Jing724 than for D9H under saline conditions. Using an iTRAQ-based method, we identified 513 differentially regulated proteins (DRPs), with 83 and 386 DRPs specific to Jing724 and D9H, respectively. In salt-stressed Jing724, the DRPs were primarily associated with the pentose phosphate pathway, glutathione metabolism, and nitrogen metabolism. Key DRPs, such as glucose-6-phosphate 1-dehydrogenase, NADPH-producing dehydrogenase, glutamate synthase, and glutamine synthetase, were identified based on pathway enrichment and protein-protein interaction analyses Moreover, salt-responsive proteins in Jing724 seedlings were implicated in energy management, maintenance of redox homeostasis, detoxification of ammonia, regulation of osmotic homeostasis, stress defense and adaptation, biotic cross-tolerance, and regulation of gene expression. Quantitative analyses of superoxide dismutase activity, malondialdehyde content,, relative electrolyte leakage, and proline content were consistent with the predicted changes based on DRP functions. Furthermore, changes in the abundance of eight representative DRPs were correlated with the corresponding mRNA levels. Our results may be useful for elucidating the molecular networks mediating salt tolerance.
引用
收藏
页码:141 / 153
页数:13
相关论文
共 50 条
  • [31] Comparative Transcriptome Analysis of Two Contrasting Maize Inbred Lines Provides Insights on Molecular Mechanisms of Stalk Rot Resistance
    Salcedo, Andres
    Al-Haddad, Jameel
    Buell, C. Robin
    Trail, Frances
    Gongora-Castillo, Elsa
    Quesada-Ocampo, Lina
    PHYTOFRONTIERS, 2021, 1 (04): : 314 - 329
  • [32] Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress
    Qian Li
    An Yang
    Wen-Hao Zhang
    BMC Plant Biology, 17
  • [33] Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress
    Li, Qian
    Yang, An
    Zhang, Wen-Hao
    BMC PLANT BIOLOGY, 2017, 17
  • [34] Growth, physiology, and transcriptional analysis of Two contrasting Carex rigescens genotypes under Salt stress reveals salt-tolerance mechanisms
    Li, Mingna
    Zhang, Kun
    Sun, Yan
    Cui, Huiting
    Cao, Shihao
    Yan, Li
    Xu, Mengxin
    JOURNAL OF PLANT PHYSIOLOGY, 2018, 229 : 77 - 88
  • [35] Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice
    Chen Bo
    Haowei Chen
    Guowei Luo
    Wei Li
    Xingen Zhang
    Qing Ma
    Beijiu Cheng
    Ronghao Cai
    Plant Cell Reports, 2020, 39 : 135 - 148
  • [36] Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice
    Bo, Chen
    Chen, Haowei
    Luo, Guowei
    Li, Wei
    Zhang, Xingen
    Ma, Qing
    Cheng, Beijiu
    Cai, Ronghao
    PLANT CELL REPORTS, 2020, 39 (01) : 135 - 148
  • [37] Comparative time-course transcriptome analysis of two contrasting alfalfa (Medicago sativa L.) genotypes reveals tolerance mechanisms to salt stress
    Ma, Dongmei
    Cai, Jinjun
    Ma, Qiaoli
    Wang, Wenjing
    Zhao, Lijuan
    Li, Jiawen
    Su, Lina
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [38] Comparative transcriptome analysis of two citrus germplasms with contrasting susceptibility to Phytophthora nicotianae provides new insights into tolerance mechanisms
    Ajengui, Arwa
    Bertolini, Edoardo
    Ligorio, Angela
    Chebil, Samir
    Ippolito, Antonio
    Sanzani, Simona Marianna
    PLANT CELL REPORTS, 2018, 37 (03) : 483 - 499
  • [39] Comparative transcriptome analysis of two citrus germplasms with contrasting susceptibility to Phytophthora nicotianae provides new insights into tolerance mechanisms
    Arwa Ajengui
    Edoardo Bertolini
    Angela Ligorio
    Samir Chebil
    Antonio Ippolito
    Simona Marianna Sanzani
    Plant Cell Reports, 2018, 37 : 483 - 499
  • [40] Advances in the regulation of plant salt-stress tolerance by miRNA
    Gao, Zhen
    Ma, Chao
    Zheng, Chengchao
    Yao, Yuxin
    Du, Yuanpeng
    MOLECULAR BIOLOGY REPORTS, 2022, 49 (06) : 5041 - 5055