Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh-Taylor instability

被引:22
作者
Goncharov, VN [1 ]
Li, D [1 ]
机构
[1] Univ Rochester, Dept Mech Engn, Laser Energet Lab, Rochester, NY 14623 USA
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 04期
关键词
D O I
10.1103/PhysRevE.71.046306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Effects of temporal density variation and spherical convergence on the nonlinear bubble evolution of single-mode, classical Rayleigh-Taylor instability are studied using an analytical model based on Layzer's theory [Astrophys. J. 122, 1 (1955)]. When the temporal density variation is included, the bubble amplitude in planar geometry is shown to asymptote to integral U-t(L)(t('))rho(t('))dt(')/rho(t), where U-L=root g/(C(g)k) is the Layzer bubble velocity, rho is the fluid density, and C-g=3 and C-g=1 for the two- and three-dimensional geometries, respectively. The asymptotic bubble amplitude in a converging spherical shell is predicted to evolve as eta similar to(eta) over barm(0)(-parallel to r)\/U-L(sp)-(eta) over bar /r(0), where r(0) is the outer shell radius, (eta) over bar (t)=integral U-t(L)sp(t('))rho(t('))r(0)(2)(t('))dt(')/rho(t)r(0)(2)(t), U-L(sp)=root-r(0)(t)r(0)(t)/l, m(t)=rho(t)r(0)(3)(t), and l is the mode number.
引用
收藏
页数:9
相关论文
共 27 条
[1]   Nonlinear three-dimensional Rayleigh-Taylor instability [J].
Abarzhi, SI .
PHYSICAL REVIEW E, 1999, 59 (02) :1729-1735
[2]   POWER LAWS AND SIMILARITY OF RAYLEIGH-TAYLOR AND RICHTMYER-MESHKOV MIXING FRONTS AT ALL DENSITY RATIOS [J].
ALON, U ;
HECHT, J ;
OFER, D ;
SHVARTS, D .
PHYSICAL REVIEW LETTERS, 1995, 74 (04) :534-537
[3]   Modified Bell-Plesset effect with compressibility: Application to double-shell ignition target designs [J].
Amendt, P ;
Colvin, JD ;
Ramshaw, JD ;
Robey, HF ;
Landen, OL .
PHYSICS OF PLASMAS, 2003, 10 (03) :820-829
[4]  
Atzeni S., 2004, PHYS INERTIAL FUSION
[5]  
Bell G. I., 1951, LA1321 LOS AL NAT LA
[6]  
Bender CM, 1978, ADV MATH METHODS SCI, P484
[7]  
CLARK D, 2004, B AM PHYS SOC, V49, P281
[8]   Spanwise homogeneous buoyancy-drag model for Rayleigh-Taylor mixing and experimental evaluation [J].
Dimonte, G .
PHYSICS OF PLASMAS, 2000, 7 (06) :2255-2269
[9]   Dependence of turbulent Rayleigh-Taylor instability on initial perturbations [J].
Dimonte, G .
PHYSICAL REVIEW E, 2004, 69 (05) :14
[10]   A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration [J].
Dimonte, G ;
Youngs, DL ;
Dimits, A ;
Weber, S ;
Marinak, M ;
Wunsch, S ;
Garasi, C ;
Robinson, A ;
Andrews, MJ ;
Ramaprabhu, P ;
Calder, AC ;
Fryxell, B ;
Biello, J ;
Dursi, L ;
MacNeice, P ;
Olson, K ;
Ricker, P ;
Rosner, R ;
Timmes, F ;
Tufo, H ;
Young, YN ;
Zingale, M .
PHYSICS OF FLUIDS, 2004, 16 (05) :1668-1693