A novel atom search optimization for dispersion coefficient estimation in groundwater

被引:185
作者
Zhao, Weiguo [1 ,2 ]
Wang, Liying [1 ]
Zhang, Zhenxing [2 ]
机构
[1] Hebei Univ Engn, Sch Water Conservancy & Hydropower, Handan 056021, Hebei, Peoples R China
[2] Univ Illinois, Illinois State Water Survey, Prairie Res Inst, Champaign, IL 61820 USA
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2019年 / 91卷
关键词
Heuristic algorithm; Optimization algorithm; Dispersion coefficient; Parameter estimation; Global optimization; Metaheuristic; Atom search optimization; ALGORITHM; EVOLUTION; PARAMETERS; SYSTEM; COLONY; MODEL;
D O I
10.1016/j.future.2018.05.037
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new type of meta-heuristic global optimization methodology based on atom dynamics is introduced. The proposed Atom Search Optimization (ASO) approach is a population-based iterative heuristic global optimization algorithm for dealing with a diverse set of optimization problems. ASO mathematically models and mimics the atomic motion model in nature, where atoms interact with each other through interaction forces resulting form Lennard-Jones potential and constraint forces resulting from bond length potential, the algorithm is simple and easy to implement. ASO is applied to a dispersion coefficient estimation problem, the experimental results demonstrate that ASO can outperform other well-known approaches such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Bacterial Foraging Optimization (BFO) and that ASO is competitive to its competitors for parameter estimation problems. The source codes of ASO are available at https://www.mathworks.com/matlabcentral/fileexchange/67011-atom-search-optimization-aso-algorithm?s_tid=srchtitle. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:601 / 610
页数:10
相关论文
共 55 条
[1]  
[Anonymous], INTELL CONTROL AUTOM
[2]  
[Anonymous], 2008, WATER RESOUR RES, DOI DOI 10.1029/2008WR006833
[3]   Evolution strategies – A comprehensive introduction [J].
Hans-Georg Beyer ;
Hans-Paul Schwefel .
Natural Computing, 2002, 1 (1) :3-52
[4]   The Wind Driven Optimization Technique and its Application in Electromagnetics [J].
Bayraktar, Zikri ;
Komurcu, Muge ;
Bossard, Jeremy A. ;
Werner, Douglas H. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (05) :2745-2757
[5]   Experimental determination of transverse dispersivity in a helix and a cochlea [J].
Benekos, Ioannis D. ;
Cirpka, Olaf A. ;
Kitanidis, Peter K. .
WATER RESOURCES RESEARCH, 2006, 42 (07)
[6]   An electromagnetism-like mechanism for global optimization [J].
Birbil, SI ;
Fang, SC .
JOURNAL OF GLOBAL OPTIMIZATION, 2003, 25 (03) :263-282
[7]   Dispersion Coefficients for Gaussian Puff Models [J].
Cao, Xiaoying ;
Roy, Gilles ;
Hurley, William J. ;
Andrews, William S. .
BOUNDARY-LAYER METEOROLOGY, 2011, 139 (03) :487-500
[8]   Theoretical basis for the measurement of local transverse dispersion in isotropic porous media [J].
Cirpka, OA ;
Kitanidis, PK .
WATER RESOURCES RESEARCH, 2001, 37 (02) :243-252
[9]   Integrating water resources and power generation: The energy-water nexus in Illinois [J].
DeNooyer, Tyler A. ;
Peschel, Joshua M. ;
Zhang, Zhenxing ;
Stillwell, Ashlynn S. .
APPLIED ENERGY, 2016, 162 :363-371
[10]   Ant system: Optimization by a colony of cooperating agents [J].
Dorigo, M ;
Maniezzo, V ;
Colorni, A .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (01) :29-41