Anomalously small wave tails in higher dimensions

被引:16
作者
Bizon, Piotr [1 ]
Chmaj, Tadeusz [2 ,3 ]
Rostworowski, Andrzej [1 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, Krakow, Poland
[2] Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, Krakow, Poland
[3] Cracow Univ Technol, Krakow, Poland
来源
PHYSICAL REVIEW D | 2007年 / 76卷 / 12期
关键词
D O I
10.1103/PhysRevD.76.124035
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the late-time tails of spherical waves propagating on even-dimensional Minkowski spacetime under the influence of a long range radial potential. We show that in six and higher even dimensions there exist exceptional potentials for which the tail has an anomalously small amplitude and fast decay. Tails outside higher-dimensional Schwarzschild black holes are also discussed.
引用
收藏
页数:11
相关论文
共 14 条
[1]  
[Anonymous], 1994, FDN COMPUTER SCI
[2]   Late time dynamics of scalar perturbations outside black holes. II. Schwarzschild geometry [J].
Barack, L .
PHYSICAL REVIEW D, 1999, 59 (04)
[3]   Late-time tails of wave propagation in higher dimensional spacetimes [J].
Cardoso, V ;
Yoshida, S ;
Dias, OJC ;
Lemos, JPS .
PHYSICAL REVIEW D, 2003, 68 (06)
[4]   WAVE-PROPAGATION IN GRAVITATIONAL SYSTEMS - LATE-TIME BEHAVIOR [J].
CHING, ESC ;
LEUNG, PT ;
SUEN, WM ;
YOUNG, K .
PHYSICAL REVIEW D, 1995, 52 (04) :2118-2132
[5]   A proof of Price's law for the collapse of a self-gravitating scalar field [J].
Dafermos, M ;
Rodnianski, I .
INVENTIONES MATHEMATICAE, 2005, 162 (02) :381-457
[6]   LATE-TIME BEHAVIOR OF STELLAR COLLAPSE AND EXPLOSIONS .1. LINEARIZED PERTURBATIONS [J].
GUNDLACH, C ;
PRICE, RH ;
PULLIN, J .
PHYSICAL REVIEW D, 1994, 49 (02) :883-889
[7]   Wave tails in non-trivial backgrounds [J].
Hod, S .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (07) :1311-1318
[8]   Stability of higher-dimensional Schwarzschild black holes [J].
Ishibashi, A ;
Kodama, H .
PROGRESS OF THEORETICAL PHYSICS, 2003, 110 (05) :901-919
[9]   SPHERICAL WAVES IN ODD-DIMENSIONAL SPACE [J].
KINGSTON, JG .
QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (04) :775-778
[10]   SPECTRAL DECOMPOSITION OF THE PERTURBATION RESPONSE OF THE SCHWARZSCHILD GEOMETRY [J].
LEAVER, EW .
PHYSICAL REVIEW D, 1986, 34 (02) :384-408