Diagonal flips in Hamiltonian triangulations on the sphere

被引:21
作者
Mori, R
Nakamoto, A
Ota, K
机构
[1] Yokohama Natl Univ, Dept Math, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
Hamilton Cycle; Hamiltonian Triangulation;
D O I
10.1007/s00373-002-0508-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we shall prove that any two Hamiltonian triangulations on the sphere with n greater than or equal to 5 vertices can be transformed into each other by at most 4n - 20 diagonal flips, preserving the existence of Hamilton cycles. Moreover, using this result, we shall prove that at most 6n - 30 diagonal flips are needed for any two triangulations on the sphere with n vertices to transform into each other.
引用
收藏
页码:413 / 418
页数:6
相关论文
共 4 条
[1]  
[Anonymous], 1997, YOKOHAMA MATH J
[2]  
Negami S., 1999, YOKOHAMA MATH J, V47, P1
[3]  
Tutte W. T., 1956, Trans. Am. Math. Soc., V82, P99, DOI DOI 10.1090/S0002-9947-1956-0081471-8
[4]  
Wagner K., 1936, Jahresbericht der Deutschen Mathematiker-Vereinigung, V46, P26