Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces

被引:22
作者
Yang, MingHua [1 ]
Fu, ZunWei [2 ]
Sun, JinYi [3 ,4 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330032, Jiangxi, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[3] NW Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[4] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
two-species chemotaxis system; Gevrey regularity; Besov spaces; blow-up criterion; Triebel-Lizorkin spaces; KELLER-SEGEL SYSTEM; NAVIER-STOKES EQUATIONS; PARABOLIC-PARABOLIC TYPE; DISSIPATIVE EQUATIONS; GLOBAL EXISTENCE; WELL-POSEDNESS; LEVEL SETS; R-N; ANALYTICITY; BOUNDEDNESS;
D O I
10.1007/s11425-016-0490-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem of a two-species chemotactic model. Using the Fourier frequency localization and the Bony paraproduct decomposition, we establish a unique local solution and blow-up criterion of the solution, when the initial data (u(0), v(0), w(0)) belongs to homogeneous Besov spaces (B) over dot(p,1)(-2+3/p) (R-3) x (B) over dot(p,1)(-2+3/r) x (B) over dot(q,1)(3/q) (R-3) for p, q and r satisfying some technical assumptions. Furthermore, we prove that if the initial data is sufficiently small, then the solution is global. Meanwhile, based on the so-called Gevrey estimates, we particularly prove that the solution is analytic in the spatial variable. In addition, we analyze the long time behavior of the solution and obtain some decay estimates for higher derivatives in Besov and Lebesgue spaces.
引用
收藏
页码:1837 / 1856
页数:20
相关论文
共 63 条
[1]   Global well-posedness of 3-D density-dependent Navier-Stokes system with variable viscosity [J].
Abidi, Hammadi ;
Zhang Ping .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (06) :1129-1150
[2]   REGULARITY OF MORREY COMMUTATORS [J].
Adams, David R. ;
Xiao, Jie .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (09) :4801-4818
[3]  
[Anonymous], 1997, Contemporary Mathematics
[4]  
Bae H, 2013, ARXIV13101624
[5]   GEVREY REGULARITY FOR A CLASS OF DISSIPATIVE EQUATIONS WITH ANALYTIC NONLINEARITY [J].
Bae, Hantaek ;
Biswas, Animikh .
METHODS AND APPLICATIONS OF ANALYSIS, 2015, 22 (04) :377-408
[6]  
Bae H, 2011, ADV DIFFER EQU CONTR, V7, P93
[7]   EXISTENCE AND ANALYTICITY OF LEI-LIN SOLUTION TO THE NAVIER-STOKES EQUATIONS [J].
Bae, Hantaek .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) :2887-2892
[8]   Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces [J].
Bae, Hantaek ;
Biswas, Animikh ;
Tadmor, Eitan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :963-991
[9]  
Biler P., 1994, Colloq. Math., V67, P297
[10]  
Biler P, 2014, ARXIV14074501