Biosynthesis of zeaxanthin in recombinant Pseudomonas putida

被引:44
作者
Beuttler, Holger [2 ]
Hoffmann, Jana [3 ]
Jeske, Marcel [3 ]
Hauer, Bernhard [2 ]
Schmid, Rolf D. [2 ]
Altenbuchner, Josef [3 ]
Urlacher, Vlada B. [1 ,2 ]
机构
[1] Univ Dusseldorf, Inst Biochem, D-40225 Dusseldorf, Germany
[2] Univ Stuttgart, Inst Tech Biochem, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Ind Genet, D-70569 Stuttgart, Germany
关键词
Pseudomonas putida; Zeaxanthin; Biosynthesis; ESCHERICHIA-COLI; ABSOLUTE-CONFIGURATION; CAROTENOID PRODUCTION; ISOPRENOID PATHWAY; ASTAXANTHIN; ACCUMULATION; EXPRESSION; PROMOTERS; GENES;
D O I
10.1007/s00253-010-2961-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Pseudomonas putida KT2440 strain was investigated for biosynthesis of the valuable xanthophyll zeaxanthin. A new plasmid was constructed harboring five carotenogenic genes from Pantoea ananatis and three genes from Escherichia coli under control of an l-rhamnose-inducible promoter. Pseudomonas putida KT2440 wild type hardly tolerated the plasmids for carotenoid production. Mating experiments with E. coli S17-1 strains revealed that the carotenoid products are toxic to the Pseudomonas putida cells. Several carotenoid-tolerant transposon mutants could be isolated, and different gene targets for relief of carotenoid toxicity were identified. After optimization of cultivation conditions and product processing, 51 mg/l zeaxanthin could be produced, corresponding to a product yield of 7 mg zeaxanthin per gram cell dry weight. The effect of various additives on production of hydrophobic zeaxanthin was investigated as well. Particularly, the addition of lecithin during cell cultivation increased volumetric productivity of Pseudomonas putida by a factor of 4.7 (51 mg/l vs. 239 mg/l).
引用
收藏
页码:1137 / 1147
页数:11
相关论文
共 40 条
  • [1] CAROTENOIDS OF FLEXIBACTERIA .5. CHIRALITY OF ZEAXANTHIN FROM DIFFERENT NATURAL SOURCES
    AASEN, AJ
    BORCH, G
    LIAAENJE.S
    [J]. ACTA CHEMICA SCANDINAVICA, 1972, 26 (01): : 404 - &
  • [2] BARTLETT L, 1969, J CHEM SOC PERK T, V1, P2527
  • [3] Britton G., 1995, Carotenoids: Spectroscopy, V1B, P13
  • [4] Characterization of bacterial β-carotene 3,3′-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli
    Choi, Seon-Kang
    Matsuda, Satoru
    Hoshino, Takayuki
    Peng, Xue
    Misawa, Norihiko
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 72 (06) : 1238 - 1246
  • [5] An update on microbial carotenoid production: application of recent metabolic engineering tools
    Das, Amitabha
    Yoon, Sang-Hwal
    Lee, Sook-Hee
    Kim, Jae-Yean
    Oh, Deok-Kun
    Kim, Seon-Won
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 77 (03) : 505 - 512
  • [6] Bioaugmentation of soils by increasing microbial richness: missing links
    Dejonghe, W
    Boon, N
    Seghers, D
    Top, EM
    Verstraete, W
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2001, 3 (10) : 649 - 657
  • [7] ABSOLUTE CONFIGURATION OF CAROTENOIDS
    DEVILLE, TE
    HURSTHOU.MB
    RUSSELL, SW
    WEEDON, BCL
    [J]. JOURNAL OF THE CHEMICAL SOCIETY D-CHEMICAL COMMUNICATIONS, 1969, (22): : 1311 - &
  • [8] Eugster C.H., 1995, Carotenoids Volume 1A: Isolation and Analysis, P71
  • [9] GERSTER H, 1993, INT J VITAM NUTR RES, V63, P93
  • [10] ACETIC-ACID FORMATION IN ESCHERICHIA-COLI FERMENTATION
    HAN, K
    LIM, HC
    HONG, J
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 1992, 39 (06) : 663 - 671