Simulation-based Parameter Identification Framework for the Calibration of Rigid Body Simulation Models

被引:0
作者
Chaicherdkiat, Poommitol [1 ]
Osterloh, Tobias [2 ]
Netramai, Chayakorn [1 ]
Ressmann, Juergen [2 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Sirindhorn Int Thai German Grad Sch Engn, Software Syst Engn, Bangkok, Thailand
[2] Rhein Westfal TH Aachen, Inst Man Machine Interact, Aachen, Germany
来源
2020 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS (SICE ISCS 2020) | 2020年
关键词
Parameter Identification; Particle Swarm Optimization; Robot Dynamics;
D O I
10.23919/siceiscs48470.2020.9083501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Typically, the parameter identification process for robotic systems requires a symbolic mathematical description of the inverse dynamics equation. The manual derivation of the inverse dynamics often is very time consuming and error-prone. Fortunately, modern simulation systems provide high-level interfaces for the calculation of the inverse dynamics, constituting user-friendly access to the inverse dynamics. The key idea of our research is to directly use the abstract interface of a simulation system for the parameter identification process to foster a flexible, comprehensive, application-independent parameter identification process. Applying this novel approach, the complex derivation of the inverse dynamics equation is superfluous. Instead, the inverse dynamics is described by a CAD-based simulation model and is computed by a unifying simulation algorithm. In this paper, we present the design and realization of our innovative simulation-based parameter identification framework and demonstrate the capacity of the framework by identifying the rigid body properties of the KUKA LWR4 robot.
引用
收藏
页码:12 / 19
页数:8
相关论文
共 50 条
  • [41] Parameter Identification of Human Body in Passive State Based on LMD
    Jin, Xin
    Zhou, Kedong
    He, Lei
    Huang, Xueying
    Zhang, Junbin
    PROCEEDINGS OF THE 2015 JOINT INTERNATIONAL MECHANICAL, ELECTRONIC AND INFORMATION TECHNOLOGY CONFERENCE (JIMET 2015), 2015, 10 : 44 - 49
  • [42] Parameter identification and simulation of time-varying equivalent circuit model of supercapacitor
    Xie, W. (tjxwd@163.com), 1600, Science Press (40): : 949 - 954
  • [43] Parameter identification and computational simulation of polyurethane foaming process by finite pointset method
    Abdessalam, Hichem
    Abbes, Boussad
    Li, Yuming
    Guo, Ying-Qiao
    Kwassi, Elvis
    Romain, Jean-Luc
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2016, 9 (01) : 85 - 100
  • [44] Parameter identification and computational simulation of polyurethane foaming process by finite pointset method
    Hichem Abdessalam
    Boussad Abbès
    Yuming Li
    Ying-Qiao Guo
    Elvis Kwassi
    Jean-Luc Romain
    International Journal of Material Forming, 2016, 9 : 85 - 100
  • [45] SIMULATION AND NUMERICAL PARAMETER IDENTIFICATION OF A BIOLOGICALLY INSPIRED BIPEDAL ROBOT WITH PASSIVE ELEMENTS
    Foerg, Daniela
    Ulbrich, Heinz
    ARCHIVE OF MECHANICAL ENGINEERING, 2010, 57 (02) : 149 - 163
  • [46] Addressing biological circuit simulation accuracy: Reachability for parameter identification and initial conditions
    Oishi, Meeko
    May, Elebeoba
    2007 IEEE/NIH LIFE SCIENCE SYSTEMS AND APPLICATIONS WORKSHOP, 2007, : 152 - +
  • [47] Parameter identification of an open-frame underwater vehicle based on numerical simulation and quantum particle swarm optimization
    Chen, Mingzhi
    Liu, Yuan
    Zhu, Daqi
    Shen, Anfeng
    Wang, Chao
    Ji, Kaimin
    INTELLIGENCE & ROBOTICS, 2024, 4 (02): : 216 - 229
  • [48] Simulation and parameter identification based on electrochemical-thermal coupling model of power lithium ion-battery
    Liu, Yu
    Tang, Shui
    Li, Lixiang
    Liu, Fangyang
    Jiang, Liangxing
    Jia, Ming
    Ai, Yan
    Yao, Chunmei
    Gu, Huijun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 844
  • [49] Knowledge-based parameter identification of TSK fuzzy models
    Tewari, Ashutosh
    Macdonald, Mirna-Urquidi
    APPLIED SOFT COMPUTING, 2010, 10 (02) : 481 - 489
  • [50] Parameter identification of biological system models based on genetic algorithms
    Kouretas, Panagiotis
    Koutroumpas, Konstantinos
    Legouras, John
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 1362 - 1366