Simulation-based Parameter Identification Framework for the Calibration of Rigid Body Simulation Models

被引:0
|
作者
Chaicherdkiat, Poommitol [1 ]
Osterloh, Tobias [2 ]
Netramai, Chayakorn [1 ]
Ressmann, Juergen [2 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Sirindhorn Int Thai German Grad Sch Engn, Software Syst Engn, Bangkok, Thailand
[2] Rhein Westfal TH Aachen, Inst Man Machine Interact, Aachen, Germany
来源
2020 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS (SICE ISCS 2020) | 2020年
关键词
Parameter Identification; Particle Swarm Optimization; Robot Dynamics;
D O I
10.23919/siceiscs48470.2020.9083501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Typically, the parameter identification process for robotic systems requires a symbolic mathematical description of the inverse dynamics equation. The manual derivation of the inverse dynamics often is very time consuming and error-prone. Fortunately, modern simulation systems provide high-level interfaces for the calculation of the inverse dynamics, constituting user-friendly access to the inverse dynamics. The key idea of our research is to directly use the abstract interface of a simulation system for the parameter identification process to foster a flexible, comprehensive, application-independent parameter identification process. Applying this novel approach, the complex derivation of the inverse dynamics equation is superfluous. Instead, the inverse dynamics is described by a CAD-based simulation model and is computed by a unifying simulation algorithm. In this paper, we present the design and realization of our innovative simulation-based parameter identification framework and demonstrate the capacity of the framework by identifying the rigid body properties of the KUKA LWR4 robot.
引用
收藏
页码:12 / 19
页数:8
相关论文
共 50 条
  • [21] Elastoplastic parameter identification by simulation of static and dynamic indentation tests
    Arizzi, Fabio
    Rizzi, Egidio
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2014, 22 (03)
  • [22] Parameter identification and simulation of synchronous generator in an isolated power system
    Xie, Pu
    Cao, Man
    Liu, Zhengchun
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENT, MATERIALS, CHEMISTRY AND POWER ELECTRONICS, 2016, 84 : 683 - 689
  • [23] Parameter identification and shape/process optimization in metal forming simulation
    Kleinermann, JP
    Ponthot, JP
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2003, 139 (1-3) : 521 - 526
  • [24] Model Parameter Identification and Simulation of Ship Power System Based on Recursive Least Squares Method
    Hu, Jinhui
    Hu, Dabin
    Xiao, Jianbo
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 482 - 486
  • [25] Multi-parameter identification of earthquake simulation shaking table based on BP neural network
    Gao, Chunhua
    Li, Cun
    Qin, Mengyuan
    Yang, Yanping
    Yuan, Zihan
    FRONTIERS IN PHYSICS, 2024, 12
  • [26] Modeling and Parameter Identification of Driveline for Mining Vehicles Based on AMESim/Simulink Co-simulation
    Yang Bin
    Wang Weida
    Jian Hongchao
    Sun Liang
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 8812 - 8817
  • [27] Phase-spacing optimization of linear microstrip antenna arrays using simulation-based surrogate superposition models
    Koziel, Slawomir
    Ogurtsov, Stanislav
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2015, 25 (06) : 536 - 547
  • [28] Inverse parameter identification framework for cohesive zone models based on multi-island genetic algorithm
    Shi, Tianxiang
    Pang, Miao
    Wang, Yangyang
    Zhang, Yongqiang
    ENGINEERING FRACTURE MECHANICS, 2024, 300
  • [29] Supporting Flight Dynamics, Parameter Identification and Simulation Teaching with a Flying Classroom
    Whidborne, James F.
    Place, Simon
    Linghai, Mushfiqul
    Lu, Linghai
    IFAC PAPERSONLINE, 2024, 58 (16): : 17 - 22
  • [30] Inverse analysis techniques for parameter identification in simulation of excavation support systems
    Rechea, C.
    Levasseur, S.
    Finno, R.
    COMPUTERS AND GEOTECHNICS, 2008, 35 (03) : 331 - 345