Simulation-based Parameter Identification Framework for the Calibration of Rigid Body Simulation Models

被引:0
|
作者
Chaicherdkiat, Poommitol [1 ]
Osterloh, Tobias [2 ]
Netramai, Chayakorn [1 ]
Ressmann, Juergen [2 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Sirindhorn Int Thai German Grad Sch Engn, Software Syst Engn, Bangkok, Thailand
[2] Rhein Westfal TH Aachen, Inst Man Machine Interact, Aachen, Germany
来源
2020 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS (SICE ISCS 2020) | 2020年
关键词
Parameter Identification; Particle Swarm Optimization; Robot Dynamics;
D O I
10.23919/siceiscs48470.2020.9083501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Typically, the parameter identification process for robotic systems requires a symbolic mathematical description of the inverse dynamics equation. The manual derivation of the inverse dynamics often is very time consuming and error-prone. Fortunately, modern simulation systems provide high-level interfaces for the calculation of the inverse dynamics, constituting user-friendly access to the inverse dynamics. The key idea of our research is to directly use the abstract interface of a simulation system for the parameter identification process to foster a flexible, comprehensive, application-independent parameter identification process. Applying this novel approach, the complex derivation of the inverse dynamics equation is superfluous. Instead, the inverse dynamics is described by a CAD-based simulation model and is computed by a unifying simulation algorithm. In this paper, we present the design and realization of our innovative simulation-based parameter identification framework and demonstrate the capacity of the framework by identifying the rigid body properties of the KUKA LWR4 robot.
引用
收藏
页码:12 / 19
页数:8
相关论文
共 50 条
  • [1] A benchmarking framework for simulation-based optimization of environmental models
    Matott, L. Shawn
    Tolson, Bryan A.
    Asadzadeh, Masoud
    ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 35 : 19 - 30
  • [2] Improved calibration of simulation models in railway dynamics: application of a parameter identification process to the multi-body model of a TGV train
    Kraft, S.
    Puel, G.
    Aubry, D.
    Funfschilling, C.
    VEHICLE SYSTEM DYNAMICS, 2013, 51 (12) : 1938 - 1960
  • [3] Simulation of damage in composites by means of interface models: parameter identification
    Corigliano, A
    Mariani, S
    COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (15) : 2299 - 2315
  • [4] Identification Method of Inertia Parameter for Rigid Body
    Guo X.
    Wang P.
    Deng Z.
    Luo Y.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2021, 41 (06): : 1221 - 1225
  • [5] Parameter identification of damping models in multibody dynamic simulation of mechanical systems
    Kim, Hyo-Joon
    Yoo, Wan-Suk
    Ok, Jin-Kyu
    Kang, Dong-Woo
    MULTIBODY SYSTEM DYNAMICS, 2009, 22 (04) : 383 - 398
  • [6] Parameter identification of damping models in multibody dynamic simulation of mechanical systems
    Hyo-Joon Kim
    Wan-Suk Yoo
    Jin-Kyu Ok
    Dong-Woo Kang
    Multibody System Dynamics, 2009, 22 : 383 - 398
  • [7] Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization
    Zhang, Y.
    Gallipoli, D.
    Augarde, C. E.
    COMPUTERS AND GEOTECHNICS, 2009, 36 (04) : 604 - 615
  • [8] Parameter Identification of Process Simulation Models as a Means for Knowledge Acquisition and Technology Transfer
    Batzias, Dimitris F.
    Ifanti, Konstantina
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 1063 - 1066
  • [9] Flow simulation-based particle swarm optimization for developing improved hemolysis models
    B. Torner
    D. Frank
    S. Grundmann
    F.-H. Wurm
    Biomechanics and Modeling in Mechanobiology, 2023, 22 : 401 - 416
  • [10] Flow simulation-based particle swarm optimization for developing improved hemolysis models
    Torner, B.
    Frank, D.
    Grundmann, S.
    Wurm, F. -H.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2023, 22 (02) : 401 - 416