Online Microgrid Energy Management Based on Safe Deep Reinforcement Learning

被引:9
|
作者
Li, Hepeng [1 ]
Wang, Zhenhua [1 ]
Li, Lusi [2 ]
He, Haibo [1 ]
机构
[1] Univ Rhode Isl, Dept Elect Comp & Biomed Engn, Kingston, RI 02881 USA
[2] Old Dominion Univ, Dept Comp Sci, Norfolk, VA 23529 USA
基金
美国国家科学基金会;
关键词
microgrid energy management; safe deep reinforcement learning; constrained Markov decision process; SYSTEM; MODEL;
D O I
10.1109/SSCI50451.2021.9659545
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microgrids provide power systems with an effective manner to integrate distributed energy resources, increase power supply reliability, and reduce operational cost. However, intermittent renewable energy resources (RESs) makes it challenging to operate a microgrid safely and economically based on forecasting. To overcome this issue, we develop an online energy management approach for efficient microgrid operation using safe deep reinforcement learning (SDRL). By considering uncertainties and AC power flow, the proposed method formulates online microgrid energy management as a constrained Markov decision process (CMDP). The objective is to find a safety-guaranteed scheduling policy to minimize the total operational cost. To achieve this, we use a SDRL method to learn a neural network-based policy based on constrained policy optimization (CPO). Different from tradition DRL methods that allow an agent to freely explore any behavior during training, the proposed method limits the exploration to safe policies that satisfy AC power flow constraints during training. The proposed method is model-free and does not require predictive information or explicit model of the microgrid. The proposed method is trained and tested on a medium voltage distribution network with real-world power grid data from California Independent Operator (CAISO). Simulation results verify the effectiveness and superiority of proposed method over traditional DRL approaches.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Intelligent Multi-Microgrid Energy Management Based on Deep Neural Network and Model-Free Reinforcement Learning
    Du, Yan
    Li, Fangxing
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) : 1066 - 1076
  • [42] Benchmarking Reinforcement Learning Algorithms on Island Microgrid Energy Management
    Zhang, Siyue
    Nandakumar, Srinivasan
    Pan, Quanbiao
    Yang, Ezekiel
    Migne, Romain
    Subramanian, Lalitha
    2021 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA), 2021,
  • [43] Battery Energy Management in a Microgrid Using Batch Reinforcement Learning
    Mbuwir, Brida V.
    Ruelens, Frederik
    Spiessens, Fred
    Deconinck, Geert
    ENERGIES, 2017, 10 (11):
  • [44] Reinforcement Learning Approach for Optimal Distributed Energy Management in a Microgrid
    Foruzan, Elham
    Soh, Leen-Kiat
    Asgarpoor, Sohrab
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (05) : 5749 - 5758
  • [45] Deep learning and reinforcement learning approach on microgrid
    Chandrasekaran, Kumar
    Kandasamy, Prabaakaran
    Ramanathan, Srividhya
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2020, 30 (10):
  • [46] A Reinforcement Learning based Energy Management System for a PV and Battery Connected Microgrid System
    Kosuru, Rahul
    Liu, Shichao
    Chaoui, Hicham
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [47] Decentralized multi-agent based energy management of microgrid using reinforcement learning
    Samadi, Esmat
    Badri, Ali
    Ebrahimpour, Reza
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 122
  • [48] Multi-agent Deep Reinforcement Learning for Microgrid Energy Scheduling
    Zuo, Zhiqiang
    Li, Zhi
    Wang, Yijing
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6184 - 6189
  • [49] Residential Energy Management with Deep Reinforcement Learning
    Wan, Zhiqiang
    Li, Hepeng
    He, Haibo
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [50] Economic Operation and Management of Microgrid System Using Deep Reinforcement Learning
    Wu, Ling
    Zhang, Ji
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100