Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems

被引:6
|
作者
Feng, Yue-Hong [1 ,4 ]
Li, Xin [2 ]
Mei, Ming [3 ,4 ]
Wang, Shu [1 ]
机构
[1] Beijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Coll Sci, Beijing 100192, Peoples R China
[3] Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
[4] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
The bipolar isentropic; non-isentropic CNS-M system; Time-decay rates; Plasmas; REGULARITY-LOSS TYPE; GLOBAL EXISTENCE; SMOOTH SOLUTIONS; CAUCHY-PROBLEM; EQUATIONS; BEHAVIOR;
D O I
10.1016/j.jde.2021.08.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The initial value problems of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell (CNS-M) systems arising from plasmas in R-3 are studied. The main difficulty of studying the bipolar isentropic/non-isentropic CNS-M systems lies in the appearance of the electromagnetic fields satisfying the hyperbolic Maxwell equations. The large time-decay rates of global smooth solutions with small amplitude in L-q(R-3) for 2 <= q <= infinity are established. For the bipolar non-isentropic CNS-M system, the difference of velocities of two charged carriers decay at the rate (1 + t)- rate (1 + t)(-3/4+1/4q) which is faster than the rate (1+t)(-3/4+1/4q)(ln -3/+t))(1-2/q) of the bipolar isentropic CNS-M system, meanwhile, the magnetic field decay at the rate (1 + t)(-3/4+1/4q)(ln -3/+t))(1-2/q) which is slower than the rate (1 +t)- 34 + 4q 3 for the bipolar isentropic CNS-M system. The approach adopted is the classical energy method but with some new developments, where the techniques of choosing symmetrizers and the spectrum analysis on the linearized homogeneous system play the crucial roles. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:471 / 542
页数:72
相关论文
共 50 条
  • [21] Global smooth flows for compressible Navier-Stokes-Maxwell equations
    Xu, Jiang
    Cao, Hongmei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):
  • [22] Uniform global convergence of non-isentropic Euler-Maxwell systems with dissipation
    Yang, Yong-Fu
    Hu, Hui-Fang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 : 332 - 347
  • [23] Global existence and optimal time decay rates of 3D non-isentropic compressible Navier-Stokes-Allen-Cahn system
    Chen, Yazhou
    Li, Hai-Liang
    Tang, Houzhi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 334 : 157 - 193
  • [24] Uniform well-posedness and singular limits of the isentropic Navier-Stokes-Maxwell system in a bounded domain
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1581 - 1593
  • [25] LARGE TIME BEHAVIORS OF THE ISENTROPIC BIPOLAR COMPRESSIBLE NAVIER-STOKES-POISSON SYSTEM
    Chen, Zou
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1725 - 1740
  • [26] Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations
    Feng, Yue-Hong
    Peng, Yue-Jun
    Wang, Shu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 : 105 - 116
  • [27] DECAY ESTIMATES OF THE NON-ISENTROPIC COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE IN R3
    Zhang, Xu
    Tan, Zhong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (08) : 1437 - 1456
  • [28] STUDY OF BOUNDARY LAYERS IN COMPRESSIBLE NON-ISENTROPIC FLOWS
    Liu, Cheng-jie
    Wang, Ya-guang
    Yang, Tong
    METHODS AND APPLICATIONS OF ANALYSIS, 2021, 28 (04) : 453 - 466
  • [29] Convergence to Steady-States of Compressible Navier-Stokes-Maxwell Equations
    Feng, Yue-Hong
    Li, Xin
    Mei, Ming
    Wang, Shu
    Cao, Yang-Chen
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (01)
  • [30] Initial layer and relaxation limit of non-isentropic compressible Euler equations with damping
    Wu, Fuzhou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (06) : 5103 - 5127