Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems

被引:6
|
作者
Feng, Yue-Hong [1 ,4 ]
Li, Xin [2 ]
Mei, Ming [3 ,4 ]
Wang, Shu [1 ]
机构
[1] Beijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Coll Sci, Beijing 100192, Peoples R China
[3] Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
[4] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
The bipolar isentropic; non-isentropic CNS-M system; Time-decay rates; Plasmas; REGULARITY-LOSS TYPE; GLOBAL EXISTENCE; SMOOTH SOLUTIONS; CAUCHY-PROBLEM; EQUATIONS; BEHAVIOR;
D O I
10.1016/j.jde.2021.08.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The initial value problems of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell (CNS-M) systems arising from plasmas in R-3 are studied. The main difficulty of studying the bipolar isentropic/non-isentropic CNS-M systems lies in the appearance of the electromagnetic fields satisfying the hyperbolic Maxwell equations. The large time-decay rates of global smooth solutions with small amplitude in L-q(R-3) for 2 <= q <= infinity are established. For the bipolar non-isentropic CNS-M system, the difference of velocities of two charged carriers decay at the rate (1 + t)- rate (1 + t)(-3/4+1/4q) which is faster than the rate (1+t)(-3/4+1/4q)(ln -3/+t))(1-2/q) of the bipolar isentropic CNS-M system, meanwhile, the magnetic field decay at the rate (1 + t)(-3/4+1/4q)(ln -3/+t))(1-2/q) which is slower than the rate (1 +t)- 34 + 4q 3 for the bipolar isentropic CNS-M system. The approach adopted is the classical energy method but with some new developments, where the techniques of choosing symmetrizers and the spectrum analysis on the linearized homogeneous system play the crucial roles. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:471 / 542
页数:72
相关论文
共 50 条
  • [1] ASYMPTOTIC BEHAVIOR OF THE COMPRESSIBLE NON-ISENTROPIC NAVIER-STOKES-MAXWELL SYSTEM IN R3
    Tan, Zhong
    Tong, Leilei
    KINETIC AND RELATED MODELS, 2018, 11 (01) : 191 - 213
  • [2] Large time behavior of the isentropic compressible Navier-Stokes-Maxwell system
    Chen, Yan
    Li, Fucai
    Zhang, Zhipeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):
  • [3] Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system
    Tan, Zhong
    Wang, Yong
    Tong, Leilei
    NONLINEARITY, 2017, 30 (10) : 3743 - 3772
  • [4] Optimal temporal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system
    Fu, Shengbin
    Wang, Weiwei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 986 - 1014
  • [5] Asymptotical Behavior of Bipolar Non-Isentropic Compressible Navier-Stokes-Poisson System
    Zou, Chen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (04): : 813 - 832
  • [6] Decay of the non-isentropic Navier-Stokes-Poisson equations
    Tan, Zhong
    Zhang, Xu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (01) : 293 - 303
  • [7] COMPRESSIBLE NON-ISENTROPIC BIPOLAR NAVIER-STOKES-POISSON SYSTEM IN R3
    Hsiao Ling
    Li Hailiang
    Yang Tong
    Zou Chen
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (06) : 2169 - 2194
  • [8] Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system
    Feng, Yue-Hong
    Wang, Shu
    Kawashima, Shuichi
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (14): : 2851 - 2884
  • [9] Existence and optimal decay rates of the compressible non-isentropic Navier-Stokes-Poisson models with external forces
    Zhao, Zhiyuan
    Li, Yeping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (16) : 6130 - 6147
  • [10] Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in R3
    Zhang, Guojing
    Li, Hai-Liang
    Zhu, Changjiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (02) : 866 - 891